Skip to main content
Log in

Existence of Vortex Rings in Beltrami Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Axisymmetric vortex rings are traveling wave solutions to the 3d Euler equations, first constructed by Fraenkel for the case without swirl via the variational principle. In this paper, we consider axisymmetric vortex rings with swirl consisting of Beltrami fields with a non-constant proportionality factor. They provide first examples to \(C^{1}\)-traveling wave solutions, axisymmetric with swirl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Choi, K.: Stability of Lamb dipoles. arXiv:1911.01795

  2. Ambrosetti, A., Mancini, G.: On some free boundary problems. In: Recent Contributions to Nonlinear Partial Differential Equations, Volume 50 of Research Notes in Mathematics, pp. 24–36. Pitman, Boston, Mass.-London (1981)

  3. Ambrosetti, A., Struwe, M.: Existence of steady vortex rings in an ideal fluid. Arch. Ration. Mech. Anal. 108, 97–109 (1989)

    Article  MathSciNet  Google Scholar 

  4. Amick, C.J., Fraenkel, L.E.: The uniqueness of Hill’s spherical vortex. Arch. Ration. Mech. Anal. 92, 91–119 (1986)

  5. Arnold, V.I.: Mathematical Methods of Classical Mechanics, Volume 60 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  6. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, New York (1998)

    Book  Google Scholar 

  7. Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. (Lond.) Ser. A 328, 153–183 (1972)

    ADS  MathSciNet  Google Scholar 

  8. Benjamin, T.B.: The Alliance of Practical and Analytical Insights into the Nonlinear Problems of Fluid Mechanics. Lecture Notes in Mathematics, vol. 503, pp. 8–29 (1976)

  9. Benjamin, T.B.: Impulse, flow force and variational principles. IMA J. Appl. Math. 32, 3–68 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Burton, G.R., Nussenzveig Lopes, H.J., Lopes Filho, M.C.: Nonlinear stability for steady vortex pairs. Commun. Math. Phys. 324, 445–463 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chae, D., Constantin, P.: Remarks on a Liouville-type theorem for Beltrami flows. Int. Math. Res. Not. IMRN 25, 10012–10016 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chandrasekhar, S.: On force-free magnetic fields. Proc. Nat. Acad. Sci. USA 42, 1–5 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  15. Constantin, P., Drivas, T.D., Ginsberg, D.: Flexibility and rigidity in steady fluid motion. Commun. Math. Phys. 385, 521–563 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Constantin, P., La, J., Vicol, V.: Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. Geom. Funct. Anal. 29, 1773–1793 (2019)

    Article  MathSciNet  Google Scholar 

  17. de Valeriola, S., Van Schaftingen, J.: Desingularization of vortex rings and shallow water vortices by a semilinear elliptic problem. Arch. Ration. Mech. Anal. 210, 409–450 (2013)

    Article  MathSciNet  Google Scholar 

  18. Domínguez-Vázquez, M., Enciso, A., Peralta-Salas, D.: Piecewise smooth stationary Euler flows with compact support via overdetermined boundary problems. Arch. Ration. Mech. Anal. 239, 1327–1347 (2021)

    Article  MathSciNet  Google Scholar 

  19. Enciso, A., Peralta-Salas, D.: Knots and links in steady solutions of the Euler equation. Ann. Math. 2(175), 345–367 (2012)

    Article  MathSciNet  Google Scholar 

  20. Enciso, A., Peralta-Salas, D.: Existence of knotted vortex tubes in steady Euler flows. Acta Math. 214, 61–134 (2015)

    Article  MathSciNet  Google Scholar 

  21. Enciso, A., Peralta-Salas, D.: Beltrami fields with a nonconstant proportionality factor are rare. Arch. Ration. Mech. Anal. 220, 243–260 (2016)

    Article  MathSciNet  Google Scholar 

  22. Enciso, A., Peralta-Salas, D., Romaniega, Á.: Beltrami fields exhibit knots and chaos almost surely. arXiv:2006.15033

  23. Fraenkel, L.E.: On steady vortex rings of small cross-section in an ideal fluid. Proc. R. Soc. Lond. Ser. A 316, 29–62 (1970)

    Article  ADS  Google Scholar 

  24. Fraenkel, L.E.: Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51, 119–135 (1972)

    Article  ADS  Google Scholar 

  25. Fraenkel, L.E.: On steady vortex rings with swirl and a Sobolev inequality. In: Progress in Partial Differential Equations: Calculus of Variations, Applications (Pont-à-Mousson, 1991), Volume 267 of Pitman Research Notes in Mathematics Series, pp. 13–26. Longman Scientific & Technical, Harlow (1992)

  26. Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic Problems, vol. 128. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  27. Fraenkel, L.E., Berger, M.S.: A global theory of steady vortex rings in an ideal fluid. Acta Math. 132, 13–51 (1974)

    Article  MathSciNet  Google Scholar 

  28. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  29. Friedman, A., Turkington, B.: Vortex rings: existence and asymptotic estimates. Trans. Am. Math. Soc. 268, 1–37 (1981)

    Article  MathSciNet  Google Scholar 

  30. Fukumoto, Y., Moffatt, H.K.: Kinematic variational principle for motion of vortex rings. Phys. D 237, 2210–2217 (2008)

    Article  MathSciNet  Google Scholar 

  31. Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29, 190–197 (2019)

    Article  MathSciNet  Google Scholar 

  32. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. In: Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, vol. 31, pp. 190–197 (1958)

  33. Helmholtz, H.: On integrals of the hydrodynamics equations which express vortex motion. Crelle’s J. 55, 25–55 (1858)

  34. Hicks, W.M.: Researches in vortex motion. Part III: on spiral or gyrostatic vortex aggregates. Philos. Trans. R. Soc. A. 192, 33–99 (1899)

    ADS  MATH  Google Scholar 

  35. Hill, M.J.M.: On a spherical vortex. Philos. Trans. R. Soc. Lond. Ser. A 185, 213–245 (1994)

    ADS  MATH  Google Scholar 

  36. Koch, H.: Non-Euclidean singular integrals and the porous medium equation. Habilitation thesis, Universit at Heidelberg, Germany (1999)

  37. Moffatt, H.K.: Degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969)

    Article  ADS  Google Scholar 

  38. Nadirashvili, N.: Liouville theorem for Beltrami flow. Geom. Funct. Anal. 24, 916–921 (2014)

    Article  MathSciNet  Google Scholar 

  39. Ni, W.M.: On the existence of global vortex rings. J. Anal. Math. 37, 208–247 (1980)

    Article  MathSciNet  Google Scholar 

  40. Opic, B., Kufner, A.: Hardy-Type Inequalities, vol. 219. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  41. Prendergast, K.: The equilibrium of a self-gravitating incompressible fluid sphere with a magnetic field. I. Astrophys. J. 123, 498 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  42. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  43. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  44. Ricca, R.L.: New developments in topological fluid mechanics: from Kelvin’s vortex knots to magnetic knots, in ideal knots. In: Ideal Knots, Ser. Knots Everything, vol. 19, pp. 255–273. World Scientific Publishing, River Edge (1998)

  45. Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York (1992)

    Google Scholar 

  46. Shafranov, V.D.: On magnetohydrodynamical equilibrium configurations. Sov. Phys. JETP 6, 545–554 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Sverak, V.: Lecture notes on “topics in mathematical physics”. http://math.umn.edu/ sverak/course-notes2011

  48. Turkington, B.: Vortex rings with swirl: axisymmetric solutions of the Euler equations with nonzero helicity. SIAM J. Math. Anal. 20, 57–73 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  49. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  50. Yang, J.F.: Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. 1, 461–475 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The property (1.4) and the references [16, 18, 31] were informed by Professor Daniel Peralta-Salas. The reference [30] was informed by Professor Yasuhide Fukumoto. The introduction and the proof of Proposition 4.8 were improved by suggestions of the referee. The author is grateful to Professors Daniel Peralta-Salas, Yasuhide Fukumoto and referees for their helpful comments and suggestions. This work is partially supported by JSPS through the Grant-in-aid for Young Scientist 20K14347, Scientific Research (B) 17H02853 and MEXT Promotion of Distinctive Joint Research Center Program Grant Number JPMXP0619217849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Abe.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, K. Existence of Vortex Rings in Beltrami Flows. Commun. Math. Phys. 391, 873–899 (2022). https://doi.org/10.1007/s00220-022-04331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04331-y

Navigation