Skip to main content

Advertisement

Log in

Soliton Resolution for Critical Co-rotational Wave Maps and Radial Cubic Wave Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we prove the soliton resolution conjecture for all times, for all solutions in the energy space, of the co-rotational wave map equation. To our knowledge this is the first such result for all initial data in the energy space for a wave-type equation. We also prove the corresponding results for radial solutions, which remain bounded in the energy norm, of the cubic (energy-critical) nonlinear wave equation in space dimension 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: Blowup for Nonlinear Hyperbolic Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 17. Birkhäuser Boston Inc., Boston (1995)

    Book  MATH  Google Scholar 

  2. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borghese, M., Jenkins, R., McLaughlin, K.. D..-R..: Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(4), 887–920 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bulut, A.: Maximizers for the Strichartz inequalities for the wave equation. Differ. Integr. Equ. 23(11/12), 1035–1072 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the asymptotic behavior of spherically symmetric wave maps. Duke Math. J. 71(1), 31–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Collot, C., Merle, F., Raphaël, P.: Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Commun. Math. Phys. 352(1), 215–285 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Côte, R.: On the soliton resolution for equivariant wave maps to the sphere. Commun. Pure Appl. Math. 68(11), 1946–2004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Côte, R., Kenig, C.E., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: I. Am. J. Math. 137(1), 139–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Côte, R., Kenig, C.E., Lawrie, A., Schlag, W.: Characterization of large energy solutions of the equivariant wave map problem: II. Am. J. Math. 137(1), 209–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Côte, R., Kenig, C.E., Lawrie, A., Schlag, W.: Profiles for the radial focusing 4d energy-critical wave equation. Commun. Math. Phys. 357(3), 943–1008 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Côte, R., Kenig, C.E., Merle, F.: Scattering below critical energy for the radial 4d yang-mills equation and for the 2d corotational wave map system. Commun. Math. Phys. 1, 203–225 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Côte, R., Kenig, C.E., Schlag, W.: Energy partition for the linear radial wave equation. Math. Ann. 358(3–4), 573–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4), 798–862 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Universality of blow up profile for small blow up solutions to the energy critical wave map equation. Int. Math. Res. Not.: IMRN 22, 6961–7025 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Duyckaerts, T., Kenig, C., Merle, F.: Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc.: JEMS 13(3), 533–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc.: JEMS 14(5), 1389–1454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duyckaerts, T., Kenig, C.E., Merle, F.: Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Commun. Pure Appl. Anal. 14(4), 1275–1326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duyckaerts, T., Kenig, C., Merle, F.: Solutions of the focusing nonradial critical wave equation with the compactness property. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15, 731–808 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Duyckaerts, T., Kenig, C., Merle, F.: Scattering profile for global solutions of the energy-critical wave equation. J. Eur. Math. Soc.: JEMS 21(7), 2117–2162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duyckaerts, T., Kenig, C., Merle, F.: Exterior energy bounds for the critical wave equation close to the ground state. Commun. Math. Phys. 379(3), 1113–1175 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Duyckaerts, T., Kenig, C., Merle, F.: Decay estimates for nonradiative solutions of the energy-critical focusing wave equation. J. Geom. Anal. 31(7), 7036–7074 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Duyckaerts, T., Kenig, C., Merle, F.: Soliton resolution for the critical wave equation with radial data in odd space dimensions. Acta Math. (to appear)

  27. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP, Art ID rpn002, 67 (2008)

  28. Eckhaus, W.: The long-time behaviour for perturbed wave-equations and related problems. In: Trends in Applications of Pure Mathematics to Mechanics (Bad Honnef,: vol. 249 of Lecture Notes in Physics), vol. 1986, pp. 168–194. Springer, Berlin (1985)

  29. Eckhaus, W., Schuur, P.: The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions. Math. Methods Appl. Sci. 5(1), 97–116 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Evans, L.C.: Partial Differential Equations, vol. 19, 2nd edn. American Mathematical Society (AMS), Providence (2010)

    MATH  Google Scholar 

  31. Fang, D., Xie, J., Cazenave, T.: Scattering for the focusing energy-subcritical nonlinear Schrödinger equation. Sci. China Math. 54(10), 2037–2062 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fermi, E., Pasta, J., Ulam, S.: Los Alamos Report LA-1940 (1955)

  33. Friedlander, F.G.: On the radiation field of pulse solutions of the wave equation. Proc. R. Soc. Ser. A 269, 53–65 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Gao, C., Krieger, J.: Optimal polynomial blow up range for critical wave maps. Commun. Pure Appl. Math. 14(5), 1705–1741 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Ginibre, J., Soffer, A., Velo, G.: The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110(1), 96–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grinis, R.: Quantization of time-like energy for wave maps into spheres. Commun. Math. Phys. 352(2), 641–702 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hillairet, M., Raphaël, P.: Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation. Anal. PDE 5(4), 777–829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4(3), 405–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Am. J. Math. 141(1), 55–118 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jendrej, J., Lawrie, A.: Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math. 213(3), 1249–1325 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Jendrej, J., Lawrie, A.: An asymptotic expansion of two-bubble wave maps (2020). arXiv:2003.05829

  43. Jendrej, J., Lawrie, A.: Continuous in time soliton resolution for two-bubble equivariant wave maps (2020). arXiv:2010.12506

  44. Jendrej, J., Lawrie, A.: Uniqueness of two-bubble wave maps (2020). arXiv:2003.05835

  45. Jia, H., Kenig, C.: Asymptotic decomposition for semilinear wave and equivariant wave map equations. Am. J. Math. 139(6), 1521–1603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kenig, C., Lawrie, A., Liu, B., Schlag, W.: Channels of energy for the linear radial wave equation. Adv. Math. 285, 877–936 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Keraani, S.: On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal. 235(1), 171–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete Contin. Dyn. Syst. 33(6), 2423–2450 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361(1–2), 1–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543–615 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Kruskal, M.D.: The birth of the soliton. In: Calogero, F. (ed.) Nonlinear Evolution Equations Solvable by the Spectral Transform, vol. 26 of Research Notes in Mathematics, pp. 1–8. Pitman, Boston (1978)

    Google Scholar 

  54. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21(5), 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lindblad, H., Sogge, C.D.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. Martel, Y., Merle, F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9) 79(4), 339–425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Martel, Y., Merle, F.: Description of the interaction of solitons for the quartic gKdV equation. Ann. Math. 174, 757–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183(3), 563–648 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Martel, Y., Merle, F.: Inelasticity of soliton collisions for the 5D energy critical wave equation. Invent. Math. 214(3), 1267–1363 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation. ii: minimal mass dynamics. J. Eur. Math. Soc.: JEMS 17(8), 1855–1925 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2), 427–454 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. European Mathematical Society, Paris (2011)

    Book  MATH  Google Scholar 

  63. Novokšenov, V.J.: Asymptotic behavior as \(t\rightarrow \infty \) of the solution of the Cauchy problem for a nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 251(4), 799–802 (1980)

    MathSciNet  Google Scholar 

  64. Pillai, M.: Infinite time blow-up solutions to the energy critical wave maps equation (2019). arXiv:1905.00167

  65. Pillai, M.: Global, non-scattering solutions to the energy critical wave maps equation (2020). arXiv:2010.08086

  66. Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Commun. Anal. Geom. 3, 297–316 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  67. Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Commun. Pure Appl. Math. 50(4), 295–310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. Raphaël, P., Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems. Publ. Math. Inst. Hautes Études Sci. 115, 1–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \({{\rm O}}(3)\)-model. Ann. Math. (2) 172(1), 187–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rodriguez, C.: Profiles for the radial focusing energy-critical wave equation in odd dimensions. Adv. Differ. Equ. 21(5/6), 505–570 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Rodriguez, C.: Threshold dynamics for corotational wave maps. Anal. PDE 14(7), 2123–2161 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schuur, P.C.: Asymptotic Analysis of Soliton Problems: An Inverse Scattering Approach, vol. 1232 of Lecture Notes in Mathematics. Springer, Berlin (1986)

    Book  Google Scholar 

  73. Segur, H., Ablowitz, M.J.: Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation. I. J. Math. Phys. 17(5), 710–713 (1976)

    Article  ADS  Google Scholar 

  74. Shatah, J., Tahvildar-Zadeh, A.S.: On the cauchy problem for equivariant wave maps. Commun. Pure Appl. Math. 47(5), 719–754 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  75. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions: No. 30 in Princeton Mathematical Series. Princeton University Press, Princeton (1970)

    Google Scholar 

  76. Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+1\) dimensions. Commun. Math. Phys. 298(1), 139–230 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Sterbenz, J., Tataru, D.: Regularity of wave-maps in dimension \(2+1\). Commun. Math. Phys. 298(1), 231–264 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  79. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4), 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  80. Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math. 56(7), 815–823 (2003) (Dedicated to the memory of Jürgen K. Moser)

  81. Tao, T.: A (concentration-) compact attractor for high-dimensional non-linear Schrödinger equations. Dyn. Partial Differ. Equ. 4(1), 1–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Tao, T.: Why are solitons stable? Bull. Am. Math. Soc. New Ser. 46, 1–33 (2009)

    MATH  Google Scholar 

  83. Tao, T., Visan, M., Zhang, X.: Minimal-mass blowup solutions of the mass-critical NLS. Forum Math. 20(5), 881–919 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  84. Topping, P.M.: Rigidity in the harmonic map heat flow. J. Differ. Geom. 45(3), 593–610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons’’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240 (1965)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Kenig.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Carlos Kenig: Partially supported by NSF Grants DMS-14363746 and DMS-1800082.

Appendices

Appendix A. Radiation Term for the Free Wave Equation

In this appendix we consider the linear inhomogeneous wave equation in any space dimension \(N\ge 3\):

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t^2u-\Delta u=f,\quad (t,x)\in {\mathbb {R}}\times {\mathbb {R}}^N\\&{u}_{\restriction t=0}=(u_0,u_1), \end{aligned}\right. \end{aligned}$$
(A.1)

with radial data.

Proposition A.1

Let

$$\begin{aligned} (u_0,u_1)\in {\mathcal {H}}=({\dot{H}}^1\times L^2)_{{{\,\mathrm{rad}\,}}}({\mathbb {R}}^N), \quad f\in L^1({\mathbb {R}},L^2_{{{\,\mathrm{rad}\,}}}({\mathbb {R}}^N)), \end{aligned}$$

and u be the corresponding solution of (A.1). Then there exists \(G\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}} \partial _r u(t,r)-G(r-t)\right| ^2dr&=0 \end{aligned}$$
(A.2)
$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}}\partial _t u(t,r)+G(r-t)\right| ^2dr&=0 \end{aligned}$$
(A.3)

If furthermore \((u_0,u_1)\in {\dot{H}}^2\times {\dot{H}}^1\) and \(\partial _t f\in L^1L^2\), then

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}} \partial _{r}\partial _t u(t,r)+G'(r-t)\right| ^2dr&=0 \end{aligned}$$
(A.4)
$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}}\partial _t^2 u(t,r)-G'(r-t)\right| ^2dr&=0 \end{aligned}$$
(A.5)

Proof

The fact that (A.2) and (A.3) hold in the case \(f=0\) is well-known (see [23, Theorem 2.1]) and goes back at least to the work of Friedlander [33].

To prove (A.2) and (A.3) in the general case, one can reduce to the case \(f=0\), by recalling that if u is a solution of (A.1) with \(f\in L^1({\mathbb {R}},L^2({\mathbb {R}}^N))\), there exists a finite energy solution \(v_L\) of the free wave equation \((\partial _t^2-\Delta )v_L=0\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty } \left\| {u}(t)-{v}_L(t)\right\| _{{\mathcal {H}}}=0. \end{aligned}$$
(A.6)

This follows immediately from the Duhamel formulation of (A.1), which yields that (A.6) holds with

$$\begin{aligned} v_L(t)=&\cos (t\sqrt{-\Delta })\left( u_0-\int _0^{+\,\infty } \frac{\sin (s\sqrt{-\Delta })}{\sqrt{-\Delta }}f(s)ds\right) \\&+\frac{\sin (t\sqrt{-\Delta })}{\sqrt{-\Delta }}\left( u_1+\int _0^{+\,\infty }\cos \left( s\sqrt{-\Delta }\right) f(s)ds \right) . \end{aligned}$$

We next assume that \(u_0\in {\dot{H}}^2\), \(u_1\in {\dot{H}}^1\), \(\partial _t f\in L^1({\mathbb {R}},L^2)\) and prove (A.4), (A.5). We first note that \(\partial _t u\) is solution of

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t^2\partial _tu-\Delta \partial _tu=\partial _t f, \quad (t,x)\in {\mathbb {R}}\times {\mathbb {R}}^N\\&{u}_{\restriction t=0}=(u_1,\Delta u_0+f(0))\in {\mathcal {H}}, \end{aligned}\right. \end{aligned}$$
(A.7)

(where f(0) is well defined and in \(L^2({\mathbb {R}}^N)\) by an elementary trace lemma). By the considerations above, there exists \(H\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}} \partial _r \partial _tu(t,r)-H(r-t)\right| ^2dr&=0 \end{aligned}$$
(A.8)
$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{+\,\infty } \left| r^{\frac{N-1}{2}}\partial _t^2 u(t,r)+H(r-t)\right| ^2dr&=0, \end{aligned}$$
(A.9)

and we are reduced to prove that \(H=-G'\).

Let \(\chi \in C^{\infty }({\mathbb {R}})\) such that \(\chi (\eta )=0\) if \(\eta \le \frac{1}{2}\) and \(\chi (\eta )=1\) if \(\eta \ge 1\). Since

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^1 |G(r-t)|^2dr=0, \end{aligned}$$

the equality (A.3) implies

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _{{\mathbb {R}}} \left| \chi (r)r^{\frac{N-1}{2}} \partial _tu(t,r)+G(r-t)\right| ^2dr=0, \end{aligned}$$

that is

$$\begin{aligned} \lim _{\tau \rightarrow \infty } \int _{{\mathbb {R}}} \left| (\eta +\tau )^{\frac{N-1}{2}} \chi (\eta +\tau )\partial _tu(\tau ,\eta +\tau )+G(\eta )\right| ^2d\eta =0. \end{aligned}$$

In other words, the family of functions

$$\begin{aligned} \eta \mapsto (\eta +\tau )^{\frac{N-1}{2}}\chi (\eta +\tau )(\partial _t u)(\tau ,\eta +\tau ) \end{aligned}$$

converge to \(-G\) in \(L^2({\mathbb {R}})\) as \(\tau \) goes to infinity. Taking the derivative in \(\eta \) and using that

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _{0}^{+\,\infty }|\partial _t u(t,r)|^2r^{N-3}dr=0 \end{aligned}$$

(which follows from the fact that there exists a finite energy solution \(w_L\) of \(\partial _t^2w_L-\Delta w_L=0\) such that \(\lim _{t\rightarrow \infty } \Vert \partial _tu(t)-w_L(t)\Vert _{{\dot{H}}^1}=0,\) and a classical dispersive estimate, see e.g. [23, Theorem 2.1]) we obtain that the family of functions

$$\begin{aligned} \eta \mapsto (\eta +\tau )^{\frac{N-1}{2}}\chi (\eta +\tau )(\partial _t\partial _r u)(\tau ,\eta +\tau ) \end{aligned}$$

converge to \(-G'\) in \({\mathcal {D}}'({\mathbb {R}})\) as \(\tau \rightarrow \infty \). However by (A.8), we obtain that this family converge to H in \(L^2({\mathbb {R}})\) as \(\tau \rightarrow \infty \). By uniqueness of the distributional limit, \(H=-G'\) concluding the proof. \(\quad \square \)

Remark A.2

We recall that for all \(G\in L^2({\mathbb {R}})\), there exists a unique finite energy solution u of (A.1) such that (A.2) and (A.3) hold: see again [23, Theorem 2.1].

Appendix B. Pseudo-Ortogonality and Channels of Energy

1.1 B.1. Linear Wave Equation

In this subsection, we prove (6.10) and (6.11)

Since \(\int _{\rho _n<|x|<\rho _n'}\ldots =\int _{\rho _n<|x|}\ldots -\int _{\rho _n'<|x|}\), it is sufficient to treat the case where \(\rho _n'=\infty \) for all n. Rescaling \(u_n\), we also assume

$$\begin{aligned} \forall n,\quad \lambda _{j,n}=1. \end{aligned}$$

Pseudo-orthogonality between two profiles. We first prove (6.10). We will use the pseudo-orthogonality (6.1) of the scaling and time translation parameters. We fix \(j\ne k\). Let

$$\begin{aligned} \varepsilon _n:=\,&\int _{|x|>\rho _n}\nabla _{t,x}U^j_n(s_n,x)\cdot \nabla _{t,x}U^k_n(s_n,x)dx\\ =\,&\int _{|x|>\rho _n}\nabla _{t,x}U^j\left( s_n-t_{j,n},x\right) \cdot \frac{1}{\lambda _{k,n}^2}\nabla _{t,x}U^k \left( \frac{s_n-t_{k,n}}{\lambda _{k,n}},\frac{x}{\lambda _{k,n}}\right) dx. \end{aligned}$$

Arguing by contradiction, we can extract subsequences and assume that the following limits exist in \({\mathbb {R}}\cup \{\pm \infty \}\).

$$\begin{aligned} \lim _{n\rightarrow \infty }s_n-t_{j,n}=T_j,\quad \lim _{n\rightarrow \infty } \frac{s_n-t_{k,n}}{\lambda _{k,n}}=T_k. \end{aligned}$$

Case 1: \(T_j\in {\mathbb {R}}\), \(T_k\in {\mathbb {R}}\). In this case we have

$$\begin{aligned} \varepsilon _n=o_n(1)+\int _{|x|>\rho _n} \nabla _{t,x}U^j(T_j,x)\cdot \frac{1}{\lambda _{k,n}^2}\nabla _{t,x} U^k\left( T_k,\frac{x}{\lambda _{k,n}} \right) dx. \end{aligned}$$

Since (6.1) implies \(\lim _n\lambda _{k,n}\in \{0,\infty \}\), we obtain right away \(\lim _{n}\varepsilon _n=0\).

Case 2. \(T_j=+\,\infty \), \(T_k\in {\mathbb {R}}\). We note that in this case, there exists \(g^j\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \varepsilon _n&= o_n(1)+\int _{\rho _n}^{\infty } g^j (r-s_n+t_{j,n})\frac{1}{\lambda _{k,n}^2} \partial _tU^k \left( T_k,\frac{r}{\lambda _{k,n}}\right) r^{3/2}dr\nonumber \\&\quad -\int _{\rho _n}^{\infty } g^j(r-s_n+t_{j,n})\frac{1}{\lambda _{k,n}^2} \partial _rU^k\left( T_k,\frac{r}{\lambda _{k,n}}\right) r^{3/2}dr. \end{aligned}$$
(B.1)

Indeed if \(\lim _{n\rightarrow \infty } t_{j,n}\in \{\pm \infty \}\), \(U^j\) is a solution of the free wave equation (3.1), and (B.1) follows from the asymptotic behaviour for these solutions, recalled in Proposition A.1 above. If \(t_{j,n}=0\) for all n, then by the definition of \(R_n\) and the assumptions \(\rho _n\ge R_n+|s_n|\), there exists a solution \(V^j_{L}\) of (3.1) such that

$$\begin{aligned} \lim _{n\rightarrow \infty } \int _{|x|>\rho _n} \left| \nabla _{t,x}U^j(s_n-t_{j,n},x)-\nabla _{t,x}V^j_L (s_n-t_{j,n},x)\right| ^2dx=0, \end{aligned}$$

and the claim follows again from Proposition A.1. Letting \(h^k=r^{3/2} \partial _tU^k(T_k,r)\in L^2(0,\infty )\), we see that

$$\begin{aligned}&\int _{\rho _n}^{\infty } g^j(r-s_n+t_{j,n})\frac{1}{\lambda _{k,n}^2} \partial _tU^k\left( T_k,\frac{r}{\lambda _{k,n}}\right) r^{3/2}dr \\&\quad = \int _{\rho _n}^{\infty } g^j(r-s_n+t_{j,n})h^k\left( \frac{r}{\lambda _{k,n}}\right) dr, \end{aligned}$$

which tends to 0 as n tends to infinity because \(\lim _ns_n-t_{j,n}=\infty \). Since the term in the second line of (B.1) can be treated in the exact same way, we obtain \(\lim _{n\rightarrow \infty }\varepsilon _n=0\).

The proof in the cases \(T_j=-\infty \), \(T_k\in {\mathbb {R}}\), and \(T_j\in {\mathbb {R}}\), \(T_k=\pm \infty \) are very close and we omit them.

Case 3. \(T_j=+\,\infty \) and \(T_k=+\,\infty \). Similarly to Case 2, there exist \(g^j \in L^2({\mathbb {R}})\) and \(g^k\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \varepsilon _n=o_n(1)+2\int _{\rho _n}^{\infty } g^j(r-s_n+t_{j,n})\frac{1}{\lambda _{k,n}^2}g^k\left( \frac{r-s_n+t_{k,n}}{\lambda _{k,n}} \right) dr, \end{aligned}$$

and the fact that \(\lim _{n\rightarrow \infty }\varepsilon _n=0\) follows easily from the pseudo-orthogonality property (6.1).

The proof in the case \(T_j=-\infty \), \(T_k=-\infty \) is the same and we omit it.

Case 4. \(T_j=+\,\infty \) and \(T_k=-\infty \). Using Proposition A.1 as in cases 2 and 3, we obtain that the contributions of the integrals of \(\partial _tU^j_n\partial _tU^k_n\) and \(\partial _rU^j_n\partial _rU^k_n\) in the definition of \(\varepsilon _n\) are opposite, and thus

$$\begin{aligned} \lim _{n\rightarrow \infty }\varepsilon _n=0. \end{aligned}$$

The proof in the case \(T_j=-\infty \), \(T_k=+\,\infty \) is exactly the same.

Pseudo-orthogonality between a profile and the dispersive remainder.

We next prove (6.11). We assume again that \(T_j=\lim _{n\rightarrow \infty } s_n-t_{j,n}\) exists in \({\mathbb {R}}\cup \{\pm \infty \}\).

Case 1. \(T_j\in {\mathbb {R}}\). Then

$$\begin{aligned} \varepsilon _n=o_n(1)+\int _{|x|>\rho _n} \nabla _{t,x}U^j(T_j,x)\nabla _{t,x}w^J_n(s_n,x)dx. \end{aligned}$$

If \(\lim _{n\rightarrow \infty }\rho _n=+\,\infty \), we deduce immediately that \(\lim _{n\rightarrow \infty }\varepsilon _n=0\). If not, we can assume \(\lim _{n\rightarrow \infty }\rho _n=\rho _{\infty }\in [0,\infty )\), and we obtain

$$\begin{aligned} \varepsilon _n=o_n(1)+\int _{|x|>\rho _{\infty }} \nabla _{t,x}U^j(T_j,x)\nabla _{t,x}w^J_n(s_n,x)dx. \end{aligned}$$

By (6.10), we can take J arbitrarily large. By the definitions of the profiles, and (6.5) we obtain, for J large enough,

(B.2)

As a consequence, \(\lim _n\varepsilon _n=0\).

Case 2. \(T_j=+\,\infty \). Arguing as in Case 2 in the proof of (6.10), we obtain that there exists \(g^j\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \varepsilon _n=o_n(1)+\int _{\rho _n}^{\infty } g^j(r+t_{j,n}-s_n)\Big (\partial _tw_n^J(s_n,r) -\partial _rw_n^J(s_n,r)\Big )r^{3/2}dr. \end{aligned}$$

If \(\lim _{n}\rho _n+t_{j,n}-s_n=+\,\infty \), we obtain right away that \(\varepsilon _n=o_n(1)\).

If \(\lim _{n}\rho _n+t_{j,n}-s_n=-\infty \), then

$$\begin{aligned} \int _{0}^{\rho _n}\left| g^j(r+t_{j,n}-s_n)\right| ^2dr\le \int _{-\infty }^{\rho _n+t_{j,n}-s_n} |g(\eta )|^2\underset{n\rightarrow \infty }{\longrightarrow }0, \end{aligned}$$

and thus

$$\begin{aligned} \varepsilon _n=\,&o_n(1)+\int _{0}^{\infty } g^j(r+t_{j,n}-s_n) \Big (\partial _tw_n^J(s_n,r)-\partial _rw_n^J(s_n,r)\Big )r^{3/2}dr\\ =\,&o_n(1)+\int \nabla _{t,x}V^j_L(s_n-t_{j,n})\cdot \nabla _{t,x}w_n^J(s_n,x)dx, \end{aligned}$$

where \(V^j_L\) is the radial solution of the linear wave equation such that

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{\infty }|r^{3/2} \partial _tV^j_L(t,r)-g^j(r-t)|^2dr+\int _0^{\infty }|r^{3/2} \partial _rV^j_L(t,r)+g^j(r-t)|^2dr=0. \end{aligned}$$

By conservation of the energy for the free wave equation (3.1),

$$\begin{aligned} \varepsilon _n=o_n(1)+\int \nabla _{t,x}V^j_L(0)\cdot \nabla _{t,x}w_n^J(t_{j,n},x)dx, \end{aligned}$$

and thus by (6.5), \(\varepsilon _n=o_n(1)\).

Finally, if \(\lim _{n}\rho _n+t_{j,n}-s_n=c\in {\mathbb {R}}\), we see that

$$\begin{aligned}&\varepsilon _n=o_n(1)+\int _{0}^{\infty } g^j_c(r+t_{j,n}-s_n) \Big (\partial _tw_n^J(s_n,r)-\partial _rw_n^J(s_n,r)\Big )r^{3/2}dr\\&\quad =o_n(1)+\int \nabla _{t,x}V^j_L(s_n-t_{j,n})\cdot \nabla _{t,x}w_n^J(s_n,x)dx, \end{aligned}$$

where \(g_c(\eta )=1\!\!1_{\eta >c}g(\eta )\), and \(V^j_L\) is the radial solution of the linear wave equation such that

$$\begin{aligned} \lim _{t\rightarrow \infty } \int _0^{\infty }|r^{3/2} \partial _tV^j_L(t,r)-g^j_c(r-t)|^2dr+\int _0^{\infty }|r^{3/2} \partial _rV^j_L(t,r)+g^j_c(r-t)|^2dr=0. \end{aligned}$$

The same proof as before yields \(\varepsilon _n=o_n(1)\).

Since the case \(T_j=-\infty \) can be treated exactly in the same way, the proof of (6.11) is complete.

1.2 B.2. Pythagorean expansion of the energy for wave maps

In this subsection we prove (7.21). In view of Claim 7.2, it is sufficient to prove

$$\begin{aligned}&j\ne k\Longrightarrow \lim _{n\rightarrow \infty }\int _0^{\infty } \partial _{r}\Psi _{0,n}^j\partial _r\Psi _{0,n}^krdr+\int _0^{\infty } \Psi _{1,n}^j\Psi _{1,n}^krdr=0 \end{aligned}$$
(B.3)
$$\begin{aligned}&j\ne k\Longrightarrow \lim _{n\rightarrow \infty }\int _0^{\infty } \left| \sin \Psi _{0,n}^j\sin \Psi _{0,n}^k\right| \frac{dr}{r}=0 \end{aligned}$$
(B.4)
$$\begin{aligned}&j\le J\Longrightarrow \lim _{n\rightarrow \infty }\int _0^{\infty } \partial _{r}\Psi _{0,n}^j\partial _r\omega _{0,n}^Jrdr+\int _0^{\infty } \Psi _{1,n}^j\omega _{1,n}^Jrdr=0\end{aligned}$$
(B.5)
$$\begin{aligned}&j\le J\Longrightarrow \lim _{n\rightarrow \infty }\int _0^{\infty }\left| \sin \Psi _{0,n}^j\sin \omega _{0,n}^J\right| \frac{dr}{r}=0. \end{aligned}$$
(B.6)

Recall that if \(j\in {\mathcal {J}}_L\), i.e. \(\lim _{n\rightarrow \infty } -t_{j,n}/\lambda _{j,n}\in \{\pm \infty \}\), then

$$\begin{aligned} \left( \Psi ^j_{0,n}(r),\Psi ^j_{1,n}(r)\right) =\left( \Psi ^j_L\left( \frac{-t_{j,n}}{\lambda _{j,n}},\frac{r}{\lambda _{j,n}} \right) ,\frac{1}{\lambda _{j,n}}\partial _t \Psi _L^j\left( \frac{-t_{j,n}}{\lambda _{j,n}},\frac{r}{\lambda _{j,n}} \right) \right) , \end{aligned}$$

where \(\Psi ^j_L\) is a solution of the linear equation (7.6) with initial data in \({\mathbf {H}}\). Thus \(U^j=\frac{1}{r}\Psi ^j\) is a radial solution of the \(1+4\) dimensional wave equation. By standard dispersive estimates for linear wave equations,

$$\begin{aligned} \lim _{n\rightarrow \infty } \int _0^{\infty } \left| \Psi _{0,n}^j(r)\right| ^2\frac{dr}{r}=\lim _{n\rightarrow \infty } \int _0^{\infty }\left| U^j\left( \frac{-t_{j,n}}{\lambda _{j,n}},r \right) \right| ^2rdr=0. \end{aligned}$$
(B.7)

This yields (B.4) when \(j\in {\mathcal {J}}_L\) or \(k\in {\mathcal {J}}_k\), and (B.6) when \(j\in {\mathcal {J}}_L\).

Next, we assume \(j\in {\mathcal {J}}_L\) and \(k\in {\mathcal {J}}_L\) and see that by (B.7) letting \(U^j_n(t,r)=\frac{1}{\lambda _{j,n}}U^j\left( \frac{t-t_{j,n}}{\lambda _{j,n}},\frac{r}{\lambda _{j,n}} \right) \) and defining similarly \(U^k_n\), we have

$$\begin{aligned}&\lim _{n\rightarrow \infty }\int _0^{\infty } \partial _{r}\Psi _{0,n}^j \partial _r\Psi _{0,n}^krdr+\int _0^{\infty } \Psi _{1,n}^j\Psi _{1,n}^krdr\\&\quad = \int _{0}^{\infty } \partial _rU_n^j(0,r)\partial _tU_n^j(0,r)r^3dr+ \int _{0}^{\infty } \partial _rU_n^j(0,r)\partial _rU_n^j(0,r)r^3dr+o_n(1), \end{aligned}$$

and (B.3) follows from (6.10).

It remains to prove (B.3) when \(j\in {\mathcal {J}}_C\) or \(k\in {\mathcal {J}}_C\), (B.4) when \(j\in {\mathcal {J}}_C\) and \(k\in {\mathcal {J}}_C\), and (B.5), (B.6) when \(j\in {\mathcal {J}}_C\).

Proof of (B.3) when \(j\in {\mathcal {J}}_C\), \(k\in {\mathcal {J}}_L\) Assume to fix ideas \(\lim _{n\rightarrow \infty } -t_{j,n}/\lambda _{j,n}=+\,\infty \). By the asymptotic formulas (A.2) and (A.3), there exists \(G^k\in L^2({\mathbb {R}})\) such that

$$\begin{aligned} \lim _{t\rightarrow +\,\infty } \int _0^{\infty }\left| r^{3/2}\partial _tU^k(t,r)+G^k(r-t)\right| dr+\int _0^{\infty } \left| r^{3/2}\partial _rU^k(t,r)-G^k(r-t)\right| dr. \end{aligned}$$

Using also that \(\lim _{t\rightarrow \infty }\int _0^{\infty } |U^k(t,r)|^2r dr=0\), we deduce

$$\begin{aligned} \lim _{t\rightarrow +\,\infty } \int _0^{\infty }\left| r^{1/2}\partial _t\Psi ^k(t,r)+G^k(r-t)\right| dr+\int _0^{\infty } \left| r^{1/2}\partial _r\Psi ^k(t,r)-G^k(r-t)\right| dr. \end{aligned}$$

Thus

$$\begin{aligned}&\left| \int _{0}^{\infty }\partial _r\Psi _{0,n}^j(r) \partial _r\Psi _{0,n}^k(r)rdr\right| \\&\quad =\left| \int _{0}^{\infty } \frac{1}{\lambda _{j,n}}\partial _r\Psi _{0}^j \left( \frac{r}{\lambda _{j,n}}\right) G^k \left( \frac{t_{k,n}+r}{\lambda _{k,n}}\right) \frac{r^{1/2}}{\lambda _{k,n}^{1/2}}dr \right| \\&\quad =\left| \int _{0}^{\infty }\partial _r\Psi _{0}^j\left( s\right) \frac{\lambda _{k,n}^{1/2}}{\lambda _{j,n}^{1/2}} G^k\left( \frac{t_{k,n}+\lambda _{j,n}s}{\lambda _{k,n}}\right) s^{1/2}ds \right| , \end{aligned}$$

which goes to 0 when n goes to infinity (this is immediate when \(G^k\) is continuous and compactly supported, and follows by density in the general case). By a very similar computation,

$$\begin{aligned} \lim _{n\rightarrow \infty }\int _{0}^{\infty }\Psi _{1,n}^j(r)\Psi _{1,n}^k(r)rdr=0, \end{aligned}$$

which concludes the proof of (B.3) in this case.

Proof of (B.3) and (B.4) when \(j,k\in {\mathcal {J}}_C\). We have

$$\begin{aligned} \int _0^{\infty } \partial _r\Psi _{0,n}^j\partial _r\Psi _{0,n}^k rdr=\,&\int _0^{\infty } \frac{1}{\lambda _{j,n}}\partial _r\Psi _0^j \left( \frac{r}{\lambda _{j,n}} \right) \frac{1}{\lambda _{k,n}} \partial _r\Psi _0^k\left( \frac{r}{\lambda _{k,n}} \right) rdr\\ =\,&\int _0^{\mu _n}\ldots +\int _{\mu _n}^{\infty }\ldots , \end{aligned}$$

where \(\mu _n=\sqrt{\lambda _{j,n}\lambda _{k,n}}\). Using Cauchy–Schwarz on each of the integrals, we see that it goes to 0 when n goes to \(\infty \), since \(\lim _n\frac{\lambda _{j,n}}{\lambda _{k,n}} +\frac{\lambda _{k,n}}{\lambda _{j,n}}=\infty \). By the same proof for the term involving \(\Psi _{1,n}^j\) and \(\Psi _{1,n}^k\), we obtain (B.3).

The proof of (B.4) when \(j,k \in {\mathcal {J}}_C\) is the same.

Proof of (B.6) when \(j\in {\mathcal {J}}_C\) We have

$$\begin{aligned} \int _0^{\infty }\left| \sin \Psi _{0,n}^j(r) \sin \omega _{0,n}^J(r)\right| \frac{dr}{r}=\int _0^{\infty }\left| \sin \Psi _{0}^j\left( r \right) \sin \omega _{0,n}^J(\lambda _{j,n}r)\right| \frac{dr}{r}. \end{aligned}$$

Let \(\varepsilon >0\). Then

$$\begin{aligned}&\int _{\varepsilon }^{\varepsilon ^{-1}}\left| \sin \Psi _{0}^j(r) \sin \omega _{0,n}^J(\lambda _{j,n}r)\right| \frac{dr}{r}\\&\quad \le \left( \int _{\varepsilon }^{\varepsilon ^{-1}}\left| \sin \Psi _{0}^j(r)\right| ^{3/2}\frac{dr}{r^{3/2}}\right) ^{2/3}\left( \int _{\varepsilon }^{\varepsilon ^{-1}} \left| \omega _{0,n}^J(\lambda _{j,n}r)\right| ^3dr \right) ^{1/3}. \end{aligned}$$

Let \(w_n^J(r)=\frac{1}{r}\omega _n^J(\lambda _{j,n}r)\). Then (7.23) implies that \(\lambda _{j,n}w_n^J(\lambda _{j,n}\cdot )\), considered as a radial function on \({\mathbb {R}}^4\), converges weakly to 0 in \({\dot{H}}^1({\mathbb {R}}^4)\). This implies that \(\lambda _{j,n}w_n^J(\lambda _{j,n}\cdot )\) converges strongly in \(L^3_{{{\,\mathrm{loc}\,}}}({\mathbb {R}}^4)\), and thus

$$\begin{aligned} \lim _{n\rightarrow \infty } \int _{\varepsilon }^{\varepsilon ^{-1}} \left| \omega _{0,n}^J(\lambda _{j,n}r)\right| ^3dr =0. \end{aligned}$$

As a consequence, for all \(\varepsilon \)

$$\begin{aligned} \lim _{n\rightarrow \infty }\int _{\varepsilon }^{\varepsilon ^{-1}}\left| \sin \Psi _{0}^j(r) \sin \omega _{0,n}^J(\lambda _{j,n}r)\right| \frac{dr}{r}=0, \end{aligned}$$

and (B.6) follows since \(\int _{0}^{\infty } \sin ^2\Psi _{0}^j(r)\frac{dr}{r}\) is finite and \(\int _0^{\infty }\sin ^2\omega _{0,n}^J(\lambda _{j,n}r)\frac{dr}{r}\) is uniformly bounded.

Appendix C. Boundedness of Integral Operators on \(L^pL^q\) Spaces

In this appendix, we consider, as in the core of the article, functions defined for \(t\in {\mathbb {R}}\), \(x\in {\mathbb {R}}^4\) that are radial in the space variable. As before we use the notation

$$\begin{aligned} \Vert u\Vert _{(L^pL^q)(R)}:=\left\| 1\!\!1_{\{|x|>R+|t|\}} u\right\| _{L^p({\mathbb {R}},L^q({\mathbb {R}}^4))}. \end{aligned}$$

Lemma C.1

Let \(R\ge 0\). For \(w\in (L^2L^8)(R)\), define

$$\begin{aligned} (Aw)(t,r)=\frac{1}{r^2}\int _{0}^t w(\tau ,r)d\tau . \end{aligned}$$

Then \(Aw \in (L^2L^{8/3})(R)\) and

$$\begin{aligned} \left\| Aw\right\| _{(L^2L^{8/3})(R)} \lesssim \Vert w\Vert _{(L^2L^8)(R)}, \end{aligned}$$

where the implicit constant is independent of \(R\ge 0\).

Proof

Step 1. We first claim that if \(h\in (L^2L^8)(R)\), then \(\frac{|t|}{r^2}h\in (L^2L^{8/3})(R)\). Indeed

$$\begin{aligned}&\left( \int _{R+|t|}^{\infty } |h(t,r)|^{8/3} \left( \frac{|t|}{r^2} \right) ^{8/3}r^3dr \right) ^{3/8}\\&\quad \lesssim |t|\left( \int _{R+|t|} h(t,r)^8r^3dr \right) ^{1/8} \left( \int _{R+|t|}^{\infty } \frac{r^3}{r^8}dr \right) ^{1/4}\\&\quad \lesssim \frac{|t|}{R+|t|}\left( \int _{R+|t|}^{\infty } h(t,r)^8r^3dr\right) ^{1/8}. \end{aligned}$$

Now \(\frac{|t|}{R+|t|}\le 1\) and \(t\mapsto \left( \int _{R+|t|}^{\infty } h(t,r)^8r^3dr\right) ^{1/8}\) is in \(L^2\) in time, concluding this step.

Step 2. In this step, we consider a positive function f in \(L^2({\mathbb {R}},L^8({\mathbb {R}}^4))\), and define

$$\begin{aligned} M(f)(t,x)=\sup _{I\ni t} \frac{1}{|I|} \int _{I}f(\tau ,x)d\tau , \end{aligned}$$

where the supremum is taken over all finite intervals I that contain t, and we prove 1

$$\begin{aligned} \left\| M(f)\right\| _{L^2L^8}\lesssim \Vert f\Vert _{L^2L^8}. \end{aligned}$$
(C.1)

Indeed, if \(f\in L^2L^2\) then

$$\begin{aligned} \Vert M(f)\Vert _{L^2L^2}\lesssim \Vert f\Vert _{L^2L^2} \end{aligned}$$
(C.2)

by Fubini and Hardy–Littlewood maximal theorem in the time variable. Furthermore, if \(f\in L^2L^{\infty }\), one can prove:

$$\begin{aligned} \Vert M(f)\Vert _{L^2L^{\infty }}\lesssim \Vert f\Vert _{L^2L^{\infty }}. \end{aligned}$$
(C.3)

Indeed,

$$\begin{aligned} M(f)(t,x)\lesssim \sup _{I\ni t}\frac{1}{|I|} \int _{I}\Vert f(\tau )\Vert _{L^{\infty }_x}d\tau \end{aligned}$$

and thus

$$\begin{aligned} \Vert Mf(t)\Vert _{L^{\infty }_x}\le \sup _{I\ni t}\frac{1}{|I|} \int _{I}\Vert f(\tau )\Vert _{L^{\infty }_x}d\tau . \end{aligned}$$

Using Hardy–Littlewood maximum theorem in the t variable, we obtain (C.3). Interpolation gives (C.1).

Step 3. Let \(w\in (L^2L^8)(R)\). Let

$$\begin{aligned} f(t,r)=|w(t,r)|1\!\!1_{\{r>t+R\}}. \end{aligned}$$

Then, for \(r>|t|+R\), we have

$$\begin{aligned} \frac{1}{|t|}\left| \int _{0}^{t}w(\tau ,r)d\tau \right| \le \frac{1}{|t|}\int _{-|t|}^{|t|}1\!\!1_{r>\tau +R}|w(\tau ,r)|d\tau \le 2M(f)(t,r), \end{aligned}$$

since \(r>|t|+R\ge |\tau |+R\) for \(0\le |\tau |\le |t|\). As a consequence, for \(r>|t|+R\),

$$\begin{aligned} \left| A(w)(t,r)\right| \lesssim \frac{|t|}{r^2}M(f)(t,r). \end{aligned}$$

By Step 1 with \(h(t,r)=M(f)(t,r)\), then Step 2, we have

$$\begin{aligned} \left\| A(w)\right\| _{(L^2L^{8/3})(R)}\lesssim \Vert M(f)\Vert _{(L^2L^8)(R)}\lesssim \Vert w\Vert _{(L^2L^8)(R)}. \end{aligned}$$

\(\square \)

Lemma C.2

Let \(R\ge 1\), \(\lambda >1/R\). For \(w\in (L^3L^6)(R)\), we define

$$\begin{aligned} (Bw)(t,r)= \frac{t}{r^4\log (r\lambda )^{1/2}}\int _0^{t} w(\tau ,r)d\tau . \end{aligned}$$

Then B is bounded from \((L^3L^6)(R)\) to \((L^1L^2)(R)\) and

$$\begin{aligned} \Vert Bw\Vert _{(L^1L^2)(R)}\lesssim \frac{1}{\log (\lambda R)^{1/3}}\Vert w\Vert _{(L^3L^6)(R)} \end{aligned}$$

Proof

We just work with \(t>0\). By Minkowski in time,

$$\begin{aligned} \left( \int _{R+t}^{\infty } \left( \int _0^t \frac{w(\tau ,r) t}{r^4\log (\lambda r)}d\tau \right) ^2r^3dr \right) ^{1/2}\le \int _{0}^t \left\| w(\tau ,r)\frac{t}{r^4\log (\lambda r)}\right\| _{L^2(R+t)}d\tau . \end{aligned}$$

Furthermore, by Hölder

$$\begin{aligned} \left\| w(\tau ,r)\frac{t}{r^4\log (\lambda r)}\right\| _{L^2(R+t)} =\,&t\left( \int _{R+t}^{\infty } |w(\tau ,r)|^2\frac{r^3}{r^8\log ^2 (\lambda r)}dr \right) ^{1/2}\\ \le \,&t\left( \int _{R+t}^{\infty }|w(\tau ,r)|^6r^3dr \right) ^{1/6} \left( \int _{R+t}^{\infty }\frac{r^3}{r^{12}\log ^3(\lambda r)}dr \right) ^{1/3}\\ \lesssim \,&\frac{t}{(R+t)^{8/3}\log (\lambda (R+t))} \int _0^t \left( \int _{R+t}^{\infty } |w(\tau ,r)|^6r^3dr \right) ^{1/6}d\tau \end{aligned}$$

Integrating, we obtain

$$\begin{aligned}&\left\| 1\!\!1_{t>0}B(w)\right\| _{(L^1L^2)(R)}\\&\quad \lesssim \int _0^{\infty } \frac{t}{(R+t)^{8/3}\log (\lambda (R+t))} \int _0^t \left( \int _{R+t}^{\infty } |w(\tau ,r)|^6r^3dr \right) ^{1/6}d\tau dt \end{aligned}$$

By Fubini,

$$\begin{aligned}&\left\| 1\!\!1_{t>0}B(w)\right\| _{(L^1L^2)(R)}\\&\quad \lesssim \int _0^{\infty } \left( \int _{R+\tau }^{\infty } |w(\tau ,r)|^6r^3dr \right) ^{1/6} \int _{\tau }^{\infty } \frac{t}{(R+t)^{8/3} \log (\lambda (R+t))} dt\,d\tau \\&\quad \lesssim \int _{0}^{\infty } \left( \int _{R+\tau }^{\infty } |w(\tau ,r)|^6r^3dr \right) ^{1/6} \int _{\tau }^{\infty }\frac{dt}{(R+t)^{5/3}\log (\lambda (R+t))} d \tau \\&\quad \lesssim \int _{0}^{\infty } \left( \int _{R+\tau }^{\infty } |w(\tau ,r)|^6r^3dr \right) ^{1/6} \frac{d\tau }{(R+\tau )^{2/3}\log (\lambda (R+\tau ))}\\&\quad \lesssim \left( \int _0^{\infty } \left( \int _{R+\tau }^{\infty } |w(\tau ,r)|^{6}r^3dr \right) ^{1/2}d\tau \right) ^{1/3}\left( \int _0^{\infty }\frac{d\tau }{(R+\tau )\log (\lambda (R+\tau ))^{3/2}}d\tau \right) ^{2/3}, \end{aligned}$$

where at the last line we have used Hölder’s inequality. The desired conclusion follows easily. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duyckaerts, T., Kenig, C., Martel, Y. et al. Soliton Resolution for Critical Co-rotational Wave Maps and Radial Cubic Wave Equation. Commun. Math. Phys. 391, 779–871 (2022). https://doi.org/10.1007/s00220-022-04330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04330-z

Navigation