Skip to main content
Log in

Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the asymptotic functional Poisson laws in the total variation norm and obtain estimates of the corresponding convergence rates for a large class of hyperbolic dynamical systems. These results generalize the ones obtained before in this area. Applications to intermittent solenoids, Axiom A attractors, Hénon attractors and to billiards, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abadi, M., Vergne, N.: Sharp error terms for return time statistics under mixing conditions. J. Theoret. Probab. 22(1), 18–37 (2009). https://doi.org/10.1007/s10959-008-0199-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, J.F., Azevedo, D.: Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete Contin. Dyn. Syst. 36(1), 1–41 (2016). https://doi.org/10.3934/dcds.2016.36.1

    Article  MathSciNet  MATH  Google Scholar 

  3. Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for Poisson approximations: the Chen-Stein method. Ann. Probab. 17(1), 9–25 (1989)

    Article  MathSciNet  Google Scholar 

  4. Barreira, L., Pesin, Y., Schmeling, J.: Dimension and product structure of hyperbolic measures. Ann. Math. (2) 149(3), 755–783 (1999). https://doi.org/10.2307/121072

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. (2) 133(1), 73–169 (1991). https://doi.org/10.2307/2944326

    Article  MathSciNet  MATH  Google Scholar 

  6. Benedicks, M., Young, L.-S.: Markov extensions and decay of correlations for certain Hénon maps. No. 261, pp. xi, 13–56 (2000). Géométrie complexe et systèmes dynamiques (Orsay, 1995)

  7. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    Book  Google Scholar 

  8. Bruin, H., Todd, M.: Return time statistics of invariant measures for interval maps with positive Lyapunov exponent. Stoch. Dyn. 9(1), 81–100 (2009). https://doi.org/10.1142/S0219493709002567

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruin, H., Demers, M.F., Todd, M.: Hitting and escaping statistics: mixing, targets and holes. Adv. Math. 328, 1263–1298 (2018). https://doi.org/10.1016/j.aim.2017.12.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruin, H., Melbourne, I., Terhesiu, D.: Sharp polynomial bounds on decay of correlations for multidimensional nonuniformly hyperbolic systems and billiards. Ann. H. Lebesgue 4, 407–451 (2021). https://doi.org/10.5802/ahl.76

    Article  MathSciNet  Google Scholar 

  11. Bunimovich, L.A.: The ergodic properties of certain billiards. Funkcional. Anal. i Priložen. 8(3), 73–74 (1974)

    MathSciNet  Google Scholar 

  12. Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65(3), 295–312 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bunimovich, L.A.: A theorem on ergodicity of two-dimensional hyperbolic billiards. Commun. Math. Phys. 130(3), 599–621 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bunimovich, L.A., Sinaĭ, Y.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78(2):247–280 (1980/81)

  15. Bunimovich, L.A., Sinaĭ, Y.G., Chernov, N.I.: Statistical properties of two-dimensional hyperbolic billiards. Uspekhi Mat. Nauk 46(4(280)), 43–92 (1991). https://doi.org/10.1070/RM1991v046n04ABEH002827

    Article  MathSciNet  MATH  Google Scholar 

  16. Chazottes, J.-R., Collet, P.: Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Ergodic Theory Dyn. Syst. 33(1), 49–80 (2013). https://doi.org/10.1017/S0143385711000897

    Article  MathSciNet  MATH  Google Scholar 

  17. Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94(3–4), 513–556 (1999). https://doi.org/10.1023/A:1004581304939

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chernov, N., Dolgopyat, D.: Brownian Brownian motion. I. Mem. Am. Math. Soc. 198(927), viii+193 (2009). https://doi.org/10.1090/memo/0927

    Article  MathSciNet  MATH  Google Scholar 

  19. Chernov, N., Markarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. American Mathematical Society, Providence (2006). https://doi.org/10.1090/surv/127

    Book  MATH  Google Scholar 

  20. Chernov, N., Zhang, H.-K.: Billiards with polynomial mixing rates. Nonlinearity 18(4), 1527–1553 (2005). https://doi.org/10.1088/0951-7715/18/4/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Am. Math. Soc. 356(4), 1637–1689 (2004). https://doi.org/10.1090/S0002-9947-03-03335-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Freitas, A.C.M., Freitas, J.M., Todd, M.: Hitting time statistics and extreme value theory. Probab. Theory Related Fields 147(3–4), 675–710 (2010). https://doi.org/10.1007/s00440-009-0221-y

    Article  MathSciNet  MATH  Google Scholar 

  23. Freitas, A.C.M., Freitas, J.M., Todd, M.: The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics. Commun. Math. Phys. 321(2), 483–527 (2013). https://doi.org/10.1007/s00220-013-1695-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Freitas, A.C.M., Freitas, J.M., Todd, M.: Speed of convergence for laws of rare events and escape rates. Stoch. Process. Appl. 125(4), 1653–1687 (2015). https://doi.org/10.1016/j.spa.2014.11.011

    Article  MathSciNet  MATH  Google Scholar 

  25. Freitas, A.C.M., Freitas, J.M., Magalhães, M.: Complete convergence and records for dynamically generated stochastic processes. Trans. Am. Math. Soc. 373(1), 435–478 (2020). https://doi.org/10.1090/tran/7922

    Article  MathSciNet  MATH  Google Scholar 

  26. Freitas, J.M., Haydn, N., Nicol, M.: Convergence of rare event point processes to the Poisson process for planar billiards. Nonlinearity 27(7), 1669–1687 (2014). https://doi.org/10.1088/0951-7715/27/7/1669

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gmachl, C.: High-power directional emission from microlasers with chaotic resonators. Science 280(5369), 1556–1564 (1998). https://doi.org/10.1126/science.280.5369.1556

    Article  ADS  Google Scholar 

  28. Haydn, N., Vaienti, S.: The compound Poisson distribution and return times in dynamical systems. Probab. Theory Related Fields 144(3–4), 517–542 (2009). https://doi.org/10.1007/s00440-008-0153-y

    Article  MathSciNet  MATH  Google Scholar 

  29. Haydn, N., Vaienti, S.: Limiting entry and return times distribution for arbitrary null sets. Commun. Math. Phys. 378(1), 149–184 (2020). https://doi.org/10.1007/s00220-020-03795-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Haydn, N.T.A., Wasilewska, K.: Limiting distribution and error terms for the number of visits to balls in nonuniformly hyperbolic dynamical systems. Discrete Contin. Dyn. Syst. 36(5), 2585–2611 (2016). https://doi.org/10.3934/dcds.2016.36.2585

    Article  MathSciNet  MATH  Google Scholar 

  31. Holland, M., Nicol, M.: Speed of convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems. Stoch. Dyn. 15(4), 155002823 (2015). https://doi.org/10.1142/S0219493715500288

    Article  MathSciNet  MATH  Google Scholar 

  32. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math. (2) 122(3), 540–574 (1985). https://doi.org/10.2307/1971329

    Article  MathSciNet  MATH  Google Scholar 

  33. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. (2) 122(3), 509–539 (1985). https://doi.org/10.2307/1971328

    Article  MathSciNet  MATH  Google Scholar 

  34. Markarian, R.: Billiards with polynomial decay of correlations. Ergodic Theory Dyn. Syst. 24(1), 177–197 (2004). https://doi.org/10.1017/S0143385703000270

    Article  MathSciNet  MATH  Google Scholar 

  35. Melbourne, I., Nicol, M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260(1), 131–146 (2005). https://doi.org/10.1007/s00220-005-1407-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Nöckel, J.U., Stone, A.D.: Ray and wave chaos in asymmetric resonant optical cavities. Nature 385(6611), 45–47 (1997). https://doi.org/10.1038/385045a0

    Article  ADS  Google Scholar 

  37. Pène, F., Saussol, B.: Poisson law for some non-uniformly hyperbolic dynamical systems with polynomial rate of mixing. Ergodic Theory Dyn. Syst. 36(8), 2602–2626 (2016). https://doi.org/10.1017/etds.2015.28

    Article  MathSciNet  MATH  Google Scholar 

  38. Pène, F., Saussol, B.: Spatio-temporal Poisson processes for visits to small sets. Israel J. Math. 240(2), 625–665 (2020). https://doi.org/10.1007/s11856-020-2074-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Pianigiani, G., Yorke, J.A.: Expanding maps on sets which are almost invariant. Decay and chaos. Trans. Am. Math. Soc. 252, 351–366 (1979). https://doi.org/10.2307/1998093

    Article  MathSciNet  MATH  Google Scholar 

  40. Pitskel’, B.: Poisson limit law for Markov chains. Ergodic Theory Dyn. Syst. 11(3), 501–513 (1991). https://doi.org/10.1017/S0143385700006301

    Article  MathSciNet  MATH  Google Scholar 

  41. Sinaĭ, Y.G.: Markov partitions and C-diffeomorphisms. Funkcional. Anal. i Priložen 2(1), 64–89 (1968)

    MathSciNet  MATH  Google Scholar 

  42. Tao, T.: Lecture notes 2 for 247a. https://www.math.ucla.edu/~tao/247a.1.06f/notes2.pdf

  43. Vaienti, S., Zhang, H.-K.: Optimal bounds for decay of correlations and \(\alpha \)-mixing for nonuniformly hyperbolic dynamical systems. arXiv e-prints, art. arXiv:1605.01793, May 2016

  44. Vergne, N., Abadi, M.: Poisson approximation for search of rare words in DNA sequences. ALEA Lat. Am. J. Probab. Math. Stat. 4, 223–244 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. (2) 147(3), 585–650 (1998). https://doi.org/10.2307/120960

    Article  MathSciNet  MATH  Google Scholar 

  46. Young, L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999). https://doi.org/10.1007/BF02808180

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to I. Melbourne for useful comments and for pointing to the paper [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaofeng Su.

Additional information

Communicated by C. Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Bunimovich, L.A. Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems. Commun. Math. Phys. 390, 113–168 (2022). https://doi.org/10.1007/s00220-022-04309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04309-w

Navigation