Skip to main content
Log in

Representations of the Planar Galilean Conformal Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, the planar Galilean conformal algebra \(\mathcal {G}\) is investigated, which is an infinite-dimensional extension of the finite-dimensional Galilean conformal algebra in \((2+1)\) dimensional space-time. We study simple restricted modules over \(\mathcal {G}\), including the highest weight modules and Whittaker modules. More precisely, we use simple modules over the finite-dimensional solvable Lie algebras to construct many simple restricted modules over \(\mathcal {G}\). Also, we present several equivalent descriptions for simple restricted modules over \(\mathcal {G}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D., Lü, R., Zhao, K.: Whittaker modules for the affine Lie algebra \(A^{(1)}_1\). Adv. Math. 289, 438–479 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aizawa, N.: Some properties of planar Galilean conformal algebras. Lie Theory Appl. Phys. 36, 301 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Aizawa,N., Kimura,Y.: Galilean conformal algebras in two spatial dimension. arXiv:1112.0634

  4. Arnal, D., Pinczon, G.: On algebraically irreducible representations of the Lie algebra \(\mathfrak{sl}(2)\). J. Math. Phys. 15, 350–359 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bagchi, A.: The BMS/GCA correspondence. Phys. Rev. Lett. 105, 171601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bagchi, A.: Tensionless strings and Galilean conformal Algebra. J. High Energy Phys. 05, 141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bagchi, A., Basu, R., Mehra, A.: Galilean conformal electrodynamics. J. High Energy Phys. 11, 061 (2014)

    Article  ADS  Google Scholar 

  8. Bagchi, A., Gopakumar, R.: Galilean conformal algebras and AdS/CFT. J. High Energy Phys. 07, 037 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bagchi, A., Gopakumar, R., Mandal, I., Miwa, A.: GCA in 2d. J. High Energy Phys. 08, 004 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215, 1552–1568 (2011)

    Article  MathSciNet  Google Scholar 

  11. Benkart, G., Ondrus, M.: Whittaker modules for generalized Weyl algebras. Represent. Theory 13, 141–164 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bhattacharyya, S., Minwalla, S., Wadia, S.R.: The incompressible non-relativistic Navier–Stokes equation from gravity. J. High Energy Phys. 08, 059 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen,Q., Yao,Y., Yang,H.: Whittaker modules for the planar Galilean conformal algebra and its central extension. arXiv:2007.04046

  14. Festuccia, G., Hansen, D., Hartong, J., Obers, N.: Symmetries and couplings of non-relativistic electrodynamics. J. High Energy Phys. 11, 037 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fouxon, I., Oz, Y.: Conformal field theory as microscopic dynamics of incompressible Euler and Navier–Stokes equations. Phys. Rev. Lett. 101, 261602 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fouxon, I., Oz, Y.: CFT hydrodynamics: symmetries, exact solutions and gravity. J. High Energy Phys. 03, 120 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gusyatnikova, V.N., Yumaguzhin, V.A.: Symmetries and conservation laws of Navier–Stokes equations. Acta Appl. Math. 15, 65–81 (1989)

    Article  MathSciNet  Google Scholar 

  18. Henkel, M., Schott, R., Stoimenov, S., Unterberger, J.: The Poincaré algebra in the contex of ageing systems: Lie structure, representations. Appell systems and coherent states. Conflu. Math. 4, 1250006 (2012)

    Article  Google Scholar 

  19. Humphreys, J.: Introduction to Lie algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

    Book  Google Scholar 

  20. Jiang, W., Pei, Y.: On the structure of Verma modules over the W-algebra \(W(2,2)\). J. Math. Phys. 51, 022303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kac, V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  22. Kac, V., Raina, A.: Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Advanced Series in Mathematical Physics, vol. 2. World Scientific Publishing Co., Inc., Teaneck (1987)

    MATH  Google Scholar 

  23. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. Marzuchuk, V., Zhao, K.: Characterization of simple highest weight modules. Can. Math. Bull. 56, 606–614 (2013)

    Article  MathSciNet  Google Scholar 

  25. Maldacena,J. M.: The large-N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2 (1998), 231 [Int. J. Theor. Phys. 38 (1999), 1113]

  26. Martelli, D., Tachikawa, Y.: Comments on Galilean conformal field theories and their geometric realization. J. High Energy Phys. 05, 091 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Mazorchuk, V., Zhao, K.: Simple Virasoro modules which are locally finite over a positive part. Sel. Math. New Ser. 20, 839–854 (2014)

    Article  MathSciNet  Google Scholar 

  28. McDowell, E.: On modules induced from Whittaker modules. J. Algebra 96, 161–177 (1985)

    Article  MathSciNet  Google Scholar 

  29. McDowell, E.: A module induced from a Whittaker module. Proc. Am. Math. Soc. 118, 349–354 (1993)

    Article  MathSciNet  Google Scholar 

  30. Tan, S., Wang, Q., Xu, C.: On Whittaker modules for a Lie algebra arising from the 2-dimensional torus. Pac. J. Math. 273, 147–167 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, W., Dong, C.: W-algebra \(W(2,2)\) and the vertex operator algebra \(L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)\). Commun. Math. Phys. 285, 991–1004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for valuable suggestions to improve the paper. The first author is partially supported by CSC of China (No. 201906340096), and NSF of China (Grants 11771410, 11931009). The second author is supported by NSERC of Canada and NSFC grant 11931009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Gao.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Gao, Y. Representations of the Planar Galilean Conformal Algebra. Commun. Math. Phys. 391, 199–221 (2022). https://doi.org/10.1007/s00220-021-04302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04302-9

Navigation