Skip to main content
Log in

Kato Smoothing, Strichartz and Uniform Sobolev Estimates for Fractional Operators With Sharp Hardy Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(0<\sigma <n/2\) and \(H=(-\Delta )^\sigma +V(x)\) be Schrödinger type operators on \({\mathbb {R}}^n\) with a class of scaling-critical potentials V(x), which include the Hardy potential \(a|x|^{-2\sigma }\) with a sharp coupling constant \(a\ge -C_{\sigma ,n}\) (\(C_{\sigma ,n}\) is the best constant of Hardy’s inequality of order \(\sigma \)). In the present paper we consider several sharp global estimates for the resolvent and the solution to the time-dependent Schrödinger equation associated with H. In the case of the subcritical coupling constant \(a>-C_{\sigma ,n}\), we first prove uniform resolvent estimates of Kato–Yajima type for all \(0<\sigma <n/2\), which turn out to be equivalent to Kato smoothing estimates for the Cauchy problem. We then establish Strichartz estimates for \(\sigma >1/2\) and uniform Sobolev estimates of Kenig–Ruiz–Sogge type for \(\sigma \ge n/(n+1)\). These extend the same properties for the Schrödinger operator with the inverse-square potential to the higher-order and fractional cases. Moreover, we also obtain improved Strichartz estimates with a gain of regularities for general initial data if \(1<\sigma <n/2\) and for radially symmetric data if \(n/(2n-1)<\sigma \le 1\), which extends the corresponding results for the free evolution to the case with Hardy potentials. These arguments can be further applied to a large class of higher-order inhomogeneous elliptic operators and even to certain long-range metric perturbations of the Laplace operator. Finally, in the critical coupling constant case (i.e., \(a=-C_{\sigma ,n}\)), we show that the same results as in the subcritical case still hold for functions orthogonal to radial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction. Springer, Berlin, (1976), Grundlehren der Mathematischen Wissenschaften, No. 223

  2. Bouclet, J.-M., Mizutani, H.: Uniform resolvent and Strichartz estimates for Schrödinger equations with critical singularities. Trans. Am. Math. Soc. 370, 7293–7333 (2018)

    Article  MATH  Google Scholar 

  3. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203, 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53, 1665–1680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carles, R., Lucha, W., Moulay, E.: High order Schrödinger and Hartree–Fock equations. J. Math. Phys 56, 122301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Miao, C., Yao, X.: Dispersive estimates with geometry of finite type. Comm. Partial Differ. Equ. 37, 479–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cuenin, J.-C.: Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272, 2987–3018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Ancona, P.: Kato smoothing and Strichartz estimates for wave equations with magnetic potentials. Commun. Math. Phys. 335, 1–16 (2015)

  10. Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L^p(\Omega )\). Math. Z. 227, 511–523 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duyckaerts, T.: Private communication

  12. Erdoğan, M.B., Goldberg, M., Green, W.R.: Limiting absorption principle and Strichartz estimates for Dirac operators in two and higher dimensions. Commun. Math. Phys. 367, 241–263 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Feng, H., Soffer, A., Wu, Z., Yao, X.: Decay estimates for higher-order elliptic operators. Trans. Am. Math. Soc. 373, 2805–2859 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, H., Soffer, A., Yao, X.: Decay estimates and Strichartz estimates of fourth-order Schrödinger operator. J. Funct. Anal. 274, 605–658 (2018)

  15. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43, 745–750 (2011)

  16. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Am. Math. Soc. 370, 219–240 (2018)

  17. Frank, R.L., Lieb, E.L., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)

  18. Ginibre, J., Velo, G.: The global Cauchy problem for the non linear Schrödinger equation. Ann. lHP-Analyse non linéaire 2, 309–327 (1985)

  19. Goldberg, M., Vega, L., Visciglia, N.: Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math. Res. Not. Art. ID 13927,(2006)

  20. Grafakos, L.: Classical Fourier Analysis. Second edition, Graduate Texts in Mathematics, 249. Springer, New York (2008)

  21. Green, W.R., Toprak, E.: On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonances. J. Differ. Equ. 267, 1899–1954 (2019)

    Article  MATH  Google Scholar 

  22. Guo, Z.: Sharp spherically averaged Strichartz estimates for the Schrödinger equation. Nonlinearity 29, 1668–1686 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Guo, Z., Li, J., Nakanishi, K., Yan, L.: On the boundary Strichartz estimates for wave and Schrödinger equations. J. Differ. Equ. 265, 5656–5675 (2018)

    Article  ADS  MATH  Google Scholar 

  24. Guo, Z., Nakanishi, K.: The Zakharov system in 4D radial energy space below the ground state, arXiv:1810.05794

  25. Gutiérrez, S.: Non trivial \(L^q\) solutions to the Ginzburg–Landau equation. Math. Ann. 328, 1–25 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Herbst, I.W.: Spectral theory of the operator \((p^2+m^2)^{1/2}-Ze^2/r\). Commun. Math. Phys. 53, 285–294 (1977)

    Article  ADS  MATH  Google Scholar 

  27. Hoshiro, T.: Mourre’s method and smoothing properties of dispersive equations. Commun. Math. Phys. 202, 255–265 (1999)

  28. Huang, S., Yao, X., Zheng, Q.: \(L^p\)-limiting absorption principle of Schrödinger operators and applications to spectral multiplier theorems. Forum Math. 30, 43–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, S., Zheng, Q.: Endpoint uniform Sobolev inequalities for elliptic operators with applications. J. Differ. Equ. 267, 4609–4625 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Huang, T., Huang, S., Zheng, Q.: Inhomogeneous oscillatory integrals and global smoothing effects for dispersive equations. J. Differ. Equ. 263, 8606–8629 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lévy-Leblond, J.-M.: Electron capture by polar molecules. Phys. Rev. 153, 1–4 (1967)

    Article  ADS  Google Scholar 

  32. Kato, T.: Wave operators and similarity for some non-self-adjoint operators, Math. Ann. 162, 258–279 (1965/1966)

  33. Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1, 481–496 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55, 329–347 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: The energy-critical NLS with inverse-square potential. Discrete Contin. Dyn. Syst. 37, 3831–3866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255, 1497–1553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mizutani, H.: Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential. J. Differ. Equ. 263, 3832–3853 (2017)

    Article  ADS  MATH  Google Scholar 

  41. Mizutani, H.: Eigenvalue bounds for non-self-adjoint Schrödinger operators with the inverse-square potential. J. Spectral Theory 9, 677–709 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mizutani, H.: Uniform Sobolev estimates for Schrödinger operators with scaling-critical potentials and applications. Anal. PDE 13, 1333–1369 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mizutani, H.: Strichartz estimates for Schrödinger equations with slowly decaying potentials. J. Funct. Anal. 279, 108789 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mizutani, H., Yao, X.: Global Kato smoothing and Strichartz estimates for higher-order Schrödinger operators with rough decay potentials, preprint. arXiv:2004.10115

  45. Mourre, É.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys. 78, 391–408 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Mourre, É.: Operateurs conjugués et propriétés de propagation. [Conjugate operators and propagation properties]. Comm. Math. Phys. 91(2), 279–300 (1983)

  47. Pausader, B.: Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn. PDE 4, 197–225 (2007)

    MATH  Google Scholar 

  48. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II, IV Academic Press. New York-London 1975,(1978)

  49. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)

  50. Ruzhansky, M., Sugimoto, M.: Smoothing properties of evolution equations via canonical transforms and comparison principle. Proc. London Math. Soc. 105, 393–423 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sikora, A., Yan, L., Yao, X.: Spectral multipliers, Bochner-Riesz means and uniform Sobolev inequalities for elliptic operators. Int. Math. Res. Not. IMRN 3070–3121,(2018)

  52. Smith, H.F., Sogge, C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differ. Equ. 25, 2171–2183 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ (1971)

  55. Strichartz, R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sugimoto, M.: Global smoothing properties of generalized Schrödinger equations. J. Anal. Math. 76, 191–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Suzuki, T.: Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy–Rellich inequalities. Funkcialaj Ekvacioj 59, 1–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tao, T.: Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006)

  59. Watanabe, K.: Smooth perturbations of the self-adjoint Operator \(|\Delta |^{\alpha /2}\). Tokyo J. Math. 14, 239–250 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Comm. Math. Phys. 110, 415–426 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H. Mizutani is partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) #JP17K14218 and Grant-in-Aid for Scientific Research (B) #JP17H02854. X. Yao is partially supported by NSFC grants No.11771165 and 12171182. H. Mizutani would like to express his thanks to Professors Avy soffer and Xiaohua Yao for their invitation to visit Wuhan and their kind hospitality at CCNU. Finally, the authors would like to thank the anonymous referees for careful reading the manuscript and providing valuable suggestions, which substantially helped improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruya Mizutani.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Strichartz Estimates for the Free Evolution

Here we prove Lemmas 3.1 and 3.2. For Lemma 3.1, we in fact prove the following more general result to include the operators \(P_0(D)\) considered in Subsection 5.1.

Lemma A.1

Assume either that \(H_0=(-\Delta )^\sigma \) with \(\sigma >0\) and \(\sigma \ne 1/2\) or that \(H_0=P_0(D)\) is given by (5.5) with \(\sigma \in {\mathbb {N}}\) and \(\sigma <n/2\). Then (3.1) and (3.2) are satisfied.

The proof of this lemma relies on the Keel–Tao theorem [34], the Littlewood–Paley square function estimates for \(\varphi _j(D)\) given in Subsection 1.2 and the following localized dispersive estimate (with the implicit constant independent of t and j):

$$\begin{aligned} {\Vert e^{-itH_0}\Phi _j(D)\Vert }_{L^1\rightarrow L^\infty }\lesssim 2^{-jn(\sigma -1)}|t|^{-n/2},\quad t\ne 0,\ j\in {\mathbb {Z}}, \end{aligned}$$
(A.1)

where \(\Phi _j(\xi )=\Phi (2^{-j}\xi )\) and \(\Phi \in C_0^\infty ({\mathbb {R}}^n)\) is supported away from the origin. (A.1) is easy to obtain if \(H_0=(-\Delta )^\sigma \). For \(H_0\) given by (5.5), an essential ingredient for proving (A.1) is the following decay estimate for the convolution kernel \(I(t,x)={\mathcal {F}}^{-1}(e^{-itP_0})(x)\):

$$\begin{aligned} |\partial _x^\alpha I(t,x)| \lesssim {\left\{ \begin{array}{ll} |t|^{-\frac{n+|\alpha |}{2\sigma }}\langle |t|^{-\frac{1}{2\sigma }}x \rangle ^{-\frac{n(\sigma -1)-|\alpha |}{2\sigma -1}} &{}\text {if}\ |t|\lesssim 1,\ \text {or}\ |t|\gtrsim 1\ \text {and}\ |t|^{-1}|x|\gtrsim 1,\\ |t|^{-\frac{n+|\alpha |}{2\delta }}\langle |t|^{-\frac{1}{2\delta }}x \rangle ^{-\frac{n(\delta -1)-|\alpha |}{2\delta -1}} &{}\text {if}\ |t|\gtrsim 1\ \text {and}\ |t|^{-1}|x|\lesssim 1,\end{array}\right. } \end{aligned}$$
(A.2)

where \(|\alpha |\le n(\sigma -1)\), \(\delta =\min \{j\ |\ a_j>0\}\le \sigma \). This bound follows from [30, Theorem 3.1] by taking \(m_2=\sigma ,m_1=\delta \) in this theorem (see also [6] and references therein).

Proof of Lemma A.1

The proof is divided into three steps.

Step 1. We first prove that the following square function estimates for the Littlewood–Paley decomposition \(\{\varphi _j(D)\}_{j\in {\mathbb {Z}}}\) hold:

$$\begin{aligned} {\Vert f\Vert }_{L^{q,2}}&\lesssim \Big (\sum _{j\in {\mathbb {Z}}}\Vert \varphi _j(D)f\Vert _{L^{q,2}}^2\Big )^{1/2},\quad 2\le q<\infty , \end{aligned}$$
(A.3)
$$\begin{aligned} {\Vert f\Vert }_{L^{q,2}}&\gtrsim \Big (\sum _{j\in {\mathbb {Z}}}\Vert \varphi _j(D)f\Vert _{L^{q,2}}^2\Big )^{1/2},\quad 1<q\le 2. \end{aligned}$$
(A.4)

These estimates can be easily obtained by the usual estimates and the real interpolation theorem. Indeed, if we set \(Sf(j,x):=\varphi _j(D)f(x)\), then the usual square function estimate

$$\begin{aligned} {\Vert Sf\Vert }_{L^2_jL^q_x}\lesssim {\Vert f\Vert }_{L^q_x} \end{aligned}$$

holds for \(1<q\le 2\). Then the real interpolation theorem (see Appendix 6.3) implies (A.4). (A.3) follows from (A.4) and a duality argument. Since \(e^{-itH_0}\) and \(\Gamma _{H_0}\) commute with \(\varphi _j(D)\), by virtue of these estimates (A.3) and (A.4), we may assume without loss of generality that \(\psi _0=\Phi _j(D)\psi _0,F=\Phi _j(D)F\) with some \(\Phi \in C_0^\infty ({\mathbb {R}}^n)\) supported away from the origin so that \(\Phi \equiv 1\) on \(\mathop {\mathrm {supp}}\nolimits \varphi \).

Step 2. We next prove the dispersive estimate (A.1). Suppose first \(H_0=(-\Delta )^\sigma \) and \(\sigma \ne 1/2\). Since \(|\mathrm {Hess}(|\xi |^{2\sigma })|\sim 1\) on \(\mathop {\mathrm {supp}}\nolimits \Phi \), the stationary phase theorem yields

$$\begin{aligned} \Vert e^{-itH_0}\Phi (D)f\Vert _{L^\infty }\lesssim |t|^{-n/2}\Vert f\Vert _{L^1},\quad t\ne 0, \end{aligned}$$

which implies (A.1) by scaling \(f(x)\mapsto f(2^jx)\) and the fact that \((-\Delta )^\sigma \) is homogeneous of order \(2\sigma \). We next let \(\sigma \in {\mathbb {N}}\), \(|\alpha |=n(\sigma -1)\) and \(H_0\) given by (5.5). When \(\delta =\sigma \), we have

$$\begin{aligned} |\partial ^\alpha I(t,x)|\lesssim |t|^{-n/2},\quad t\ne 0, \end{aligned}$$

since \((n+n(\sigma -1))/(2\sigma )=n/2\). When \(\delta <\sigma \), we similarly have \(|\partial ^\alpha I(t,x)|\lesssim |t|^{-n/2}\) for the former case in (A.2). For the latter case, since \(|x|\lesssim |t|\), \(|\partial ^\alpha I(t,x)|\lesssim |t|^{-\delta (n,\sigma ,\delta )}\) where

$$\begin{aligned} \delta (n,\sigma ,\delta )=\frac{\sigma n}{2\delta }-\left( 1-\frac{1}{2\delta }\right) \frac{n(\sigma -\delta )}{2\delta -1}=\frac{\sigma n-n\sigma +n\delta }{2\delta }=\frac{n}{2}. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} {\Vert |D|^{n(\sigma -1)}e^{-itH_0}\Vert }_{L^1\rightarrow L^\infty }\lesssim |t|^{-n/2},\quad t\ne 0. \end{aligned}$$
(A.5)

which, together with the bound \({\Vert |2^{-j}D|^{n(1-\sigma )}\Phi _j(D)\Vert }_{L^\infty \rightarrow L^\infty }\lesssim 1\), implies (A.1).

Step 3. Now we recall Keel–Tao’s theorem [34, Theorem 10.1] which, in a special case, states that if a family of operators \(\{U(t)\}_{t\in {\mathbb {R}}}\subset {\mathbb {B}}(L^2({\mathbb {R}}^n))\) satisfies

  • \({\Vert U(t)\Vert }\lesssim 1\) uniformly in \(t\in {\mathbb {R}}\);

  • \({\Vert U(t)U(s)^*\Vert }_{L^1\rightarrow L^\infty }\lesssim |t-s|^{-\alpha }\) for \(t\ne s\) with some \(\alpha >0\),

then, for any \(\alpha \)-admissible pairs (pq) and \(({\tilde{p}},{\tilde{q}})\), one has

$$\begin{aligned} {\Vert U(t)\psi _0\Vert }_{L^p_tL^{q,2}_x}\lesssim {\Vert \psi _0\Vert }_{L^2_x},\quad {\left\| \int _0^tU(t)U(s)^*F(s)ds\right\| }_{L^p_tL^{q,2}_x}\lesssim {\Vert F\Vert }_{L^{{\tilde{p}}'}_tL^{{\tilde{q}}',2}_x}. \end{aligned}$$

By Bernstein’s inequality (C.4) and (A.1), we have

$$\begin{aligned} {\Vert \Phi _j(D)e^{-itH_0}\Phi _j(D)\Vert }_{L^1\rightarrow L^\infty }\lesssim 2^{-jn(\sigma -1)}|t|^{-n/2}. \end{aligned}$$

Putting \(N_j=2^{-2j(\sigma -1)}\) and making the change of variable \(t\mapsto N_jt\), we have

$$\begin{aligned} {\Vert \Phi _j(D)e^{-iN_j(t-s)H_0}\Phi _j(D)\Vert }_{L^1\rightarrow L^\infty }\lesssim |t-s|^{-n/2}. \end{aligned}$$

By the unitarity of \(e^{-itN_jH_0}\) we also obtain \({\Vert \Phi _j(D)e^{-iN_j t H_0}\Vert }\lesssim 1\). Therefore, one can apply the above Keel–Tao theorem to \(U(t)=\Phi _j(D)e^{-iN_j t H_0}\) obtaining

$$\begin{aligned} {\Vert e^{-iN_j t H_0}\Phi _j(D)\psi _0\Vert }_{L^{p}_tL^{q,2}_x}&\lesssim {\Vert \psi _0\Vert }_{L^2_x},\\ {\left\| \Phi _j(D)\int _0^te^{-iN_j(t-s)H_0}\Phi _j(D)F(s)ds\right\| }_{L^{p}_tL^{q,2}_x}&\lesssim {\Vert F\Vert }_{L^{{\tilde{p}}'}_tL^{{\tilde{q}}',2}_x}. \end{aligned}$$

By rescaling \(t\mapsto N_j^{-1}t\) and \(s\mapsto N_j^{-1}s\) and using (C.4), we have (3.1) and (3.2) for \(\psi _0,F\) replaced by \(\Phi _j(D)\psi _0,\Phi _j(D)F\). Thanks to (A.3) and (A.4), we obtain (3.1) and (3.2). \(\square \)

Proof of Lemma 3.2

Under the conditions in Lemma 3.2, it has been proved by [23] that

$$\begin{aligned} {\Vert e^{-itH_0}\Phi (D)\psi _0\Vert }_{L^{p_1}_t{\mathcal {L}}^{q_1}_rL^2_\omega }&\lesssim {\Vert \psi _0\Vert }_{L^2_x}, \end{aligned}$$
(A.6)
$$\begin{aligned} {\Vert \Gamma _{H_0}\Phi (D)F\Vert }_{L^{2}_t{\mathcal {L}}^{q_1}_rL^2_\omega }&\lesssim \Vert F\Vert _{L^{2}_t{\mathcal {L}}^{q_2'}_rL^2_\omega }, \end{aligned}$$
(A.7)

where \(\Gamma _{H_0}F(t)=\int _0^t e^{-i(t-s)H_0}F(s)ds\). Since \(\varphi _j(D)=\Phi _j(D)\varphi _j(D)\), the estimate (A.6) and the same scaling argument as above then imply that

$$\begin{aligned} {\Vert |D|^{s_1}e^{-itH_0}\varphi _j(D)\psi _0\Vert }_{L^{p_1}_t{\mathcal {L}}^{q_1}_rL^2_\omega }\lesssim 2^{-js_1}{\Vert |D|^{s_1}\varphi _j(D)\psi _0\Vert }_{L^2_x} \lesssim {\Vert \varphi _j(D)\psi _0\Vert }_{L^2_x}. \end{aligned}$$

Since \(p_1>2\), using Minkowski’s inequality and this estimate, we have

$$\begin{aligned} \Vert |D|^{s_1}e^{-itH_0}\psi _0\Vert _{L^{p_1}_tB[{\mathcal {L}}^{q_1}_rL^2_\omega ]}^2 \lesssim \sum _{j\in {\mathbb {Z}}}\Vert \varphi _j(D)\psi _0\Vert _{L^2_x}^2 \lesssim \Vert \psi _0\Vert _{L^2_x}^2 \end{aligned}$$

and (3.3) follows. Next, since \({\Vert f\Vert }_{{\mathcal {L}}^q_rL^2_\omega }\sim {\Vert f\Vert }_{L^q_x}\) under the radial symmetry, we see that (A.6), (A.7) and the real interpolation theory (see Appendix 6.3) imply

$$\begin{aligned} {\Vert e^{-itH_0}\Phi (D)\psi _0\Vert }_{L^2_tL^{q_1,2}_x}\lesssim {\Vert \psi _0\Vert }_{L^2_x},\quad {\Vert \Gamma _{H_0}\Phi (D)F\Vert }_{L^{2}_tL^{q_1,2}_x}\lesssim {\Vert F\Vert }_{L^{2}_tL^{q_2',2}_x} \end{aligned}$$

for radially symmetric data \(\psi _0,F\). The same scaling argument as above then yields

$$\begin{aligned} {\Vert |D|^{s_1}e^{-itH_0}\varphi _j(D)\psi _0\Vert }_{L^2_tL^{q_1,2}_x}&\lesssim {\Vert \varphi _j(D)\psi _0\Vert }_{L^2_x},\\ {\Vert |D|^{s(2,q_1)}\Gamma _{H_0}\varphi _j(D)F\Vert }_{L^{2}_tL^{q_1,2}_x}&\lesssim {\Vert \varphi _j(D)|D|^{-s(2,q_2)}F\Vert }_{L^{2}_tL^{q_2',2}_x}, \end{aligned}$$

which, together with (A.3) and (A.4), implies the desired estimate (3.4). \(\square \)

Appendix B. Proof of Example 1.1

Let \(H_0=P_0(D)\) be given by \(P_0(\xi )=\sum _{j=1}^Ja_j|\xi |^{2\sigma _j}\), where \(J\in {\mathbb {N}}\), \(0<\sigma _1<\sigma _2<\ldots<\sigma _J=\sigma <n/2\), \(a_j\ge 0\) and \(a_J=1\). Recall that, in such a case, \(H_\ell \) are given by

$$\begin{aligned} H_\ell =(2\sigma )^{\ell }(-\Delta )^\sigma +\sum _{j=1}^{J-1}(2\sigma _j)^{\ell }a_j(-\Delta )^{\sigma _j},\quad \ell =0,1,2. \end{aligned}$$

Here we show that the conditions in Example 1.1 implies Assumption A associated with these \(H_\ell \). Firstly, (1.17) is just a paraphrase of (1.13). Secondly, we use (1.18) and the condition \(a_1,\ldots ,a_{m-1}\ge 0\) to obtain (1.14), namely

$$\begin{aligned} \langle (H_1+V_1)u,u \rangle \ge \langle (2\sigma (-\Delta )^\sigma +V_1)u,u \rangle \gtrsim \langle (-\Delta )^\sigma u,u \rangle . \end{aligned}$$
(B.1)

Finally, writing

$$\begin{aligned} H_2+V_2=2\sigma \Big (2\sigma (-\Delta )^\sigma +\sum _{j=1}^{J-1}\frac{\sigma _j}{\sigma }2\sigma _ja_j(-\Delta )^{\sigma _j} +V_1\Big )-2\sigma V_1+V_2 \end{aligned}$$

and using the fact \(\sigma _ja_j\le \sigma a_j\), we have

$$\begin{aligned} |\langle (H_2+V_2)u,u \rangle |\le \langle (2\sigma (H_1+V_1)u,u \rangle +|\langle (2\sigma V_1-V_2)u,u \rangle |. \end{aligned}$$

This bound, together with (1.19) and the first inequality in (B.1), implies (1.15).

Appendix C. Some Supplementary Materials from Harmonic Analysis

Here we record several materials from Harmonic Analysis used frequently in the paper. We refer to textbooks [20] and [1] for details.

  1. (i)

    \(\underline{\textit{Real interpolation space and theorem}}\). Let \((X_1,X_2)\) be a Banach couple, i.e., \(X_1,X_2\) are two Banach spaces continuously embedded into a Hausdorff topological vector space. For \(0<\theta <1\) and \(1\le q\le \infty \), the real interpolation space \(X_{\theta ,q}=(X_1,X_2)_{\theta ,q}\) is a Banach space satisfying \(X_0\cap X_1\subset X_{\theta ,q}\subset X_0+X_1\), \(X_{\theta ,q}=X_0\) if \(X_0=X_1\), \(X_{\theta ,q}=X_{1-\theta ,q}\) and

    $$\begin{aligned} X_{\theta ,1}\hookrightarrow X_{\theta ,q_1}\hookrightarrow X_{\theta ,q_2}\hookrightarrow X_{\theta ,\infty },\quad 1<q_1\le q_2<\infty . \end{aligned}$$
    (C.1)

    Let \((X_0,X_1)\) and \((Y_0,Y_1)\) be two Banach couples and T be a bounded linear operator from \((X_0,X_1)\) to \((Y_0,Y_1)\) in the sense that \(T:X_j\rightarrow Y_j\) and \({\Vert T\Vert }_{X_j\rightarrow Y_j}\le M_j\) for \(j=0,1\). Then T extends to a bounded operator from \(X_{\theta ,q}\) to \(Y_{\theta ,q}\) satisfying \({\Vert T\Vert }_{X_{\theta ,q}\rightarrow Y_{\theta ,q}}\le M_0^{1-\theta }M_1^\theta \).

  2. (ii)

    \(\underline{\textit{Lorentz space}}\). Let \((M,d\mu )\) be a \(\sigma \)-finite measure space. The Lorentz space \(L^{p,q}=L^{p,q}(M,d\mu )\) is realized as a real interpolation between Lebesgue spaces, namely \(L^{p_\theta ,q}=(L^{p_0},L^{p_1})_{\theta ,q}\) where \(1\le p_0<p_1\le \infty \), \(1\le q\le \infty \), \(1/p_\theta =(1-\theta )/p_0+\theta /p_1\) and \(0<\theta <1\). By (C.1), we have the following continuous embeddings:

    $$\begin{aligned} L^{p,1}\hookrightarrow L^{p,q_1}\hookrightarrow L^{p,p}=L^p\hookrightarrow L^{p,q_2}\hookrightarrow L^{p,\infty },\quad 1\le q_1\le p\le q_2\le \infty . \end{aligned}$$

    Moreover, for \(1<p,q<\infty \), we have \((L^{p,q})'=L^{p',q'}\) and \( {\Vert f\Vert }_{L^{p,q}}\sim \sup _{{\Vert g\Vert }_{L^{p',q'}}=1}\left| \int fgdx\right| \). Finally, the following O’Neil inequality (Hölder’s inequality for Lorentz norms) holds:

    $$\begin{aligned} {\Vert fg\Vert }_{L^{p,q}}\lesssim {\Vert f\Vert }_{L^{p_1,q_1}}{\Vert g\Vert }_{L^{p_2,q_2}},\quad {\Vert fg\Vert }_{L^{p,q}}\lesssim {\Vert f\Vert }_{L^{\infty }}{\Vert g\Vert }_{L^{p,q}} \end{aligned}$$
    (C.2)

    where \(1\le p,p_1,p_2<\infty \), \(1\le q,q_1,q_2\le \infty \), \(1/p_1+1/p_2=1/p\) and \(1/q_1+1/q_2=1/q\).

  3. (iii)

    \(\underline{\textit{Bochner space}}\). Given a Banach space X and \(1\le p\le \infty \), the Bochner space \(L^pX=L^p(M,d\mu ;X)\) is defined by the norm \(\Vert f\Vert _{L^pX}=\Vert \Vert f\Vert _X\Vert _{L^p}\). For any Banach couple \((X_0,X_1)\), \(0<\theta <1\), \(1<p_0\le p_1<\infty \), the real interpolation space between \(L^{p_0}X_0\) and \(L^{p_1}X_1\) with the second exponent \(q=p_\theta \) is given by \((L^{p_0}X_0,L^{p_1}X_1)_{\theta ,p_\theta }=L^{p_\theta }X_{\theta ,p_\theta }\). In particular, \((L^2_tL^{q_0}_x,L^2_tL^{q_1}_x)_{\theta ,2}=L^2_tL^{q_\theta ,2}_x\) for \(1<q_0<q_1<\infty \) and \(0<\theta <1\). Note that \((L^{p_0}X_0,L^{p_1}X_1)_{\theta ,q}\) is not necessarily equal to \(L^{p_\theta }X_{\theta ,q}\) if \(q\ne p_\theta \).

  4. (iv)

    \(\underline{\textit{Sobolev}'{} \textit{s inequality}}\). If \(1<p<q<\infty \), \(1<s<n\) and \(1/p-1/q=s/n\), then

    $$\begin{aligned} {\Vert f\Vert }_{L^{q,2}({\mathbb {R}}^n)}\lesssim {\Vert |D|^sf\Vert }_{L^{p,2}({\mathbb {R}}^n)}. \end{aligned}$$
    (C.3)

    This inequality follows from the Hardy–Littlewood–Sobolev inequality \(|D|^{-s}:L^p\rightarrow L^q\) and the real interpolation theorem.

  5. (v)

    \(\underline{ {\text {Bernstein's inequality}}}\). Let \(\varphi \in C_0^\infty ({\mathbb {R}}^n)\) be supported away from the origin. Then, for all \(1\le p\le q\le \infty \), \(\varphi _j(D)=\varphi (2^{-j}D)\) satisfies

    $$\begin{aligned} {\Vert \varphi _j(D)\Vert }_{L^{p,2}\rightarrow L^{q,2}}\lesssim 2^{-jn(1/q-1/p)},\quad j\in {\mathbb {Z}}, \end{aligned}$$
    (C.4)

    with \(L^{r,2}\) replaced by \(L^r\) if \(r=1,\infty \). Since \(\varphi (D)f={\check{\varphi }}*f\), the special case \(j=0\) follows from Young’s convolution inequality and real interpolation theorem. By virtue of the scaling \(f(x)\mapsto f(2^jx)\), the general cases also follow from the case \(j=0\).

  6. (vi)

    \(\underline{{\textit{Christ-Kiselev}'{} \textit{s lemma}}}\). Let \(-\infty \le a<b\le \infty \), \({\mathcal {X}},{\mathcal {Y}}\) be Banach spaces of functions on \({\mathbb {R}}^n\) so that \({\mathcal {X}}\cap L^2\) is dense in \({\mathcal {X}}\), and \(\{K(t,s)\}_{t,s\in (a,b)}\subset {\mathbb {B}}(L^2)\) be such that \(K:L^2\rightarrow C((a,b)^2;L^2)\). Define an integral operator T with the operator valued kernel K by

    $$\begin{aligned} TF(t)=\int _a^bK(t,s)F(s)ds. \end{aligned}$$

    Assume \(TF(t)\in {\mathcal {Y}}\) for a.e. \(t\in (a,b)\) and there exist \(1\le p<q\le \infty \) and \(C>0\) such that

    $$\begin{aligned} \Vert TF\Vert _{L^q((a,b);{\mathcal {Y}})}\le C\Vert F\Vert _{L^p((a,b);{\mathcal {X}})} \end{aligned}$$
    (C.5)

    for any simple function \(F:(a,b)\rightarrow L^2\cap {\mathcal {X}}\). Then the operator

    $$\begin{aligned} {\tilde{T}}f(t)=\int _a^tK(t,s)F(s)ds \end{aligned}$$

    satisfies the following estimate for the same pq:

    $$\begin{aligned} \Vert {\tilde{T}}F\Vert _{L^q((a,b);{\mathcal {Y}})}\le {\tilde{C}}\Vert F\Vert _{L^p((a,b);{\mathcal {X}})}, \end{aligned}$$

    where \({\tilde{C}}=C2^{1-2(1/p-1/q)}(1-2^{-(1/p-1/q)})^{-1}\). Note that the condition \(p<q\) is necessary since \({\tilde{C}}\rightarrow \infty \) as \(p\rightarrow q\). This is a minor modification of [52, Lemma 3.1] (see also the original paper [7]) where the condition \(K\in C({\mathbb {R}}^2;{\mathbb {B}}({\mathcal {X}},{\mathcal {Y}}))\) was assumed to define \(T,{\tilde{T}}\) on \(C_t{\mathcal {X}}\cap L^1_t{\mathcal {X}}\). In the present setting, the above assumption is sufficient to define \(T,{\tilde{T}}\) on \(C_t({\mathcal {X}}\cap L^2)\cap L^1_t({\mathcal {X}}\cap L^2)\) and the same proof as that of [52, Lemma 3.1] works well to obtain the above statement. Such a modification is useful when one considers the case with \(K(t,s)=e^{-i(t-s)H}\) to prove inhomogeneous Strichartz estimates for \({\tilde{T}}=\Gamma _H\) by using the corresponding homogeneous Strichartz estimates for \(e^{-itH}\), since \(e^{-i(t-s)H}:L^2_x\rightarrow C({\mathbb {R}}^2;L^2_x)\) for any self-adjoint operator H on \(L^2\), while it is not always true that \(e^{-itH}: {\mathcal {X}}\rightarrow {\mathcal {Y}}\) for each t unless \({\mathcal {X}}={\mathcal {Y}}=L^2\). Moreover, the condition that \(TF(t)\in {\mathcal {Y}}\) for a.e. t follows from the corresponding homogeneous Strichartz estimates for \(e^{-itH}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizutani, H., Yao, X. Kato Smoothing, Strichartz and Uniform Sobolev Estimates for Fractional Operators With Sharp Hardy Potentials. Commun. Math. Phys. 388, 581–623 (2021). https://doi.org/10.1007/s00220-021-04229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04229-1

Navigation