Skip to main content
Log in

Gaussian Random Permutation and the Boson Point Process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct an infinite volume spatial random permutation \(({{\textsf {X}}},\sigma )\), where \({{\textsf {X}}}\subset {\mathbb {R}}^d\) is locally finite and \(\sigma :{{\textsf {X}}}\rightarrow {{\textsf {X}}}\) is a permutation, associated to the formal Hamiltonian

$$\begin{aligned} H({{\textsf {X}}},\sigma ) = \sum _{x\in {{\textsf {X}}}} \Vert x-\sigma (x)\Vert ^2. \end{aligned}$$

The measures are parametrized by the point density \(\rho \) and the temperature \(\alpha \). Spatial random permutations are naturally related to boson systems through a representation originally due to Feynman (Phys Rev 91:1291–1301, 1953). Let \(\rho _c=\rho _c(\alpha )\) be the critical density for Bose–Einstein condensation in Feynman’s representation. Each finite cycle of \(\sigma \) induces a loop of points of \({{\textsf {X}}}\). For \(\rho \le \rho _c\) we define \(({{\textsf {X}}}, \sigma )\) as a Poisson process of finite unrooted loops of a random walk with Gaussian increments that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (Probab Theory Related Fields 128(4):565–588, 2004). We also construct Gaussian random interlacements, a Poisson process of doubly infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (Ann Math 2 171(3):2039–2087, 2010). For \(d\ge 3\) and \(\rho >\rho _c\) we define \(({{\textsf {X}}},\sigma )\) as the superposition of independent realizations of the Gaussian loop soup at density \(\rho _c\) and the Gaussian random interlacements at density \(\rho -\rho _c\). In either case we call \(({{\textsf {X}}}, \sigma )\) a Gaussian random permutation at density \(\rho \) and temperature \(\alpha \). The resulting measure satisfies a Markov property and it is Gibbs for the Hamiltonian H. Its point marginal \({{\textsf {X}}}\) has the same distribution as the boson point process introduced by Shirai-Takahashi (J Funct Anal 205(2):414–463, 2003) in the subcritical case, and by Tamura-Ito (J Funct Anal 243(1): 207–231, 2007) in the supercritical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963). https://doi.org/10.1063/1.1704002

    Article  ADS  MathSciNet  Google Scholar 

  2. Cannon, J.T.: Infinite volume limits of the canonical free Bose gas states on the Weyl algebra. Commun. Math. Phys. 29, 89–104 (1973)

  3. Feynman, R.P.: Atomic theory of the \(\lambda \) transition in helium. Phys. Rev. 91, 1291–1301 (1953). https://doi.org/10.1103/PhysRev.91.1291

    Article  ADS  MATH  Google Scholar 

  4. Sütő, A.: Percolation transition in the Bose gas. J. Phys. A 26(18), 4689–4710 (1993). https://doi.org/10.1088/0305-4470/26/18/031

  5. Sütő, A.: Percolation transition in the Bose gas. II. J. Phys. A 35(33), 6995–7002 (2002). https://doi.org/10.1088/0305-4470/35/33/303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Tamura, H., Ito, K.R.: A canonical ensemble approach to the fermion/boson random point processes and its applications. Commun. Math. Phys. 263(2), 353–380 (2006). https://doi.org/10.1007/s00220-005-1507-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975). https://doi.org/10.2307/1425855

    Article  MathSciNet  MATH  Google Scholar 

  8. Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003). https://doi.org/10.1016/S0022-1236(03)00171-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Tamura, H., Ito, K.R.: A random point field related to Bose–Einstein condensation. J. Funct. Anal. 243(1), 207–231 (2007). https://doi.org/10.1016/j.jfa.2006.10.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Related Fields 128(4), 565–588 (2004). https://doi.org/10.1007/s00440-003-0319-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawler, G.F., Trujillo Ferreras, J.A.: Random walk loop soup. Trans. Am. Math. Soc. 359(2), 767–787 (2007). https://doi.org/10.1090/S0002-9947-06-03916-X

    Article  MathSciNet  MATH  Google Scholar 

  12. Le Jan, Y.: Markov loops, coverings and fields. Ann. Fac. Sci. Toulouse Math. 6) 26(2, 401–416 (2017). https://doi.org/10.5802/afst.1538

    Article  MathSciNet  MATH  Google Scholar 

  13. Fichtner, K.-H.: On the position distribution of the ideal Bose gas. Math. Nachr. 151, 59–67 (1991). https://doi.org/10.1002/mana.19911510105

    Article  MathSciNet  MATH  Google Scholar 

  14. Wakolbinger, A.: Review of the article “On the position distribution of the ideal Bose gas” by Karl-Heinz Fichtner. Math. Rev. MR1121197 (1991). https://mathscinet.ams.org/mathscinet-getitem?mr=1121197

  15. Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. 2) 171(3, 2039–2087 (2010). https://doi.org/10.4007/annals.2010.171.2039

    Article  MathSciNet  MATH  Google Scholar 

  16. Le Jan, Y.: Markov Paths, Loops and Fields. Lecture Notes in Mathematics, vol. 2026, p. 124. Springer, (2011). https://doi.org/10.1007/978-3-642-21216-1. Lectures from the 38th Probability Summer School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. https://doi.org/10.1007/978-3-642-21216-1

  17. Eisenbaum, N.: A Cox process involved in the Bose–Einstein condensation. Ann. Henri Poincaré 9(6), 1123–1140 (2008). https://doi.org/10.1007/s00023-008-0376-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Le Jan, Y.: Markov loops and renormalization. Ann. Probab. 38(3), 1280–1319 (2010). https://doi.org/10.1214/09-AOP509

    Article  MathSciNet  MATH  Google Scholar 

  19. Sznitman, A.-S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17, 9–9 (2012). https://doi.org/10.1214/ECP.v17-1792

    Article  MathSciNet  MATH  Google Scholar 

  20. Benfatto, G., Cassandro, M., Merola, I., Presutti, E.: Limit theorems for statistics of combinatorial partitions with applications to mean field Bose gas. J. Math. Phys. 46(3), 033303–38 (2005). https://doi.org/10.1063/1.1855933

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Betz, V., Ueltschi, D.: Spatial random permutations and Poisson-Dirichlet law of cycle lengths. Electron. J. Probab. 16, 41–11731192 (2011). https://doi.org/10.1214/EJP.v16-901

    Article  MathSciNet  MATH  Google Scholar 

  22. Bogachev, L.V., Zeindler, D.: Asymptotic statistics of cycles in surrogate-spatial permutations. Commun. Math. Phys. 334(1), 39–116 (2015). https://doi.org/10.1007/s00220-014-2110-1

  23. Elboim, D., Peled, R.: Limit distributions for Euclidean random permutations. Commun. Math. Phys. 369(2), 457–522 (2019). https://doi.org/10.1007/s00220-019-03421-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fichtner, K.-H.: Random permutations of countable sets. Probab. Theory Related Fields 89(1), 35–60 (1991). https://doi.org/10.1007/BF01225824

    Article  MathSciNet  MATH  Google Scholar 

  25. Gandolfo, D., Ruiz, J., Ueltschi, D.: On a model of random cycles. J. Stat. Phys. 129(4), 663–676 (2007). https://doi.org/10.1007/s10955-007-9410-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Betz, V., Ueltschi, D.: Spatial random permutations and infinite cycles. Commun. Math. Phys. 285(2), 469–501 (2009). https://doi.org/10.1007/s00220-008-0584-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Betz, V.: Random permutations of a regular lattice. J. Stat. Phys. 155(6), 1222–1248 (2014). https://doi.org/10.1007/s10955-014-0945-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Biskup, M., Richthammer, T.: Gibbs measures on permutations over one-dimensional discrete point sets. Ann. Appl. Probab. 25(2), 898–929 (2015). https://doi.org/10.1214/14-AAP1013

    Article  MathSciNet  MATH  Google Scholar 

  29. Armendáriz, I., Ferrari, P.A., Groisman, P., Leonardi, F.: Finite cycle Gibbs measures on permutations of \({\mathbb{Z}}^d\). J. Stat. Phys. 158(6), 1213–1233 (2015). https://doi.org/10.1007/s10955-014-1169-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Vogel, Q.: Emergence of interlacements from the finite volume bose soup. arXiv preprint arXiv:2011.02760, 1–27 (2020)

  31. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, p. 810. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511801655

    Book  MATH  Google Scholar 

  32. Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability, vol. 100, p. 300. Chapman & Hall/CRC, Boca Raton, FL (2004)

  33. Kingman, J.F.C.: Poisson Processes. Oxford Studies in Probability, vol. 3, p. 104. The Clarendon Press, Oxford University Press, New York (1993). Oxford Science Publications

  34. Last, G., Penrose, M.: Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks, vol. 7, p. 293. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  35. Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973). https://doi.org/10.1007/BF01646686

  36. Ueltschi, D.: The model of interlacing spatial permutations and its relation to the Bose gas. In: Mathematical Results in Quantum Mechanics, pp. 255–272. Publ., Hackensack, NJ, World Sci. (2008). https://doi.org/10.1142/9789812832382_0018

Download references

Acknowledgements

We thank the referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Ferrari.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armendáriz, I., Ferrari, P.A. & Yuhjtman, S. Gaussian Random Permutation and the Boson Point Process. Commun. Math. Phys. 387, 1515–1547 (2021). https://doi.org/10.1007/s00220-021-04215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04215-7

Navigation