Skip to main content
Log in

Conformal Field Theories with Sporadic Group Symmetry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The monster sporadic group is the automorphism group of a central charge \(c=24\) vertex operator algebra (VOA) or meromorphic conformal field theory (CFT). In addition to its \(c=24\) stress tensor T(z), this theory contains many other conformal vectors of smaller central charge; for example, it admits 48 commuting \(c=\frac{1}{2}\) conformal vectors whose sum is T(z). Such decompositions of the stress tensor allow one to construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce evidence for the existence of a number of CFTs with sporadic symmetry groups and employ a variety of techniques, including Hecke operators, modular linear differential equations, and Rademacher sums, to compute the characters of these CFTs. Our examples include (extensions of) nine of the sporadic groups appearing as subquotients of the monster, as well as the simple groups \({}^2{\textit{E}}_6(2)\) and \({\textit{F}}_4(2)\) of Lie type. Many of these examples are naturally associated to McKay’s \(\widehat{E_8}\) correspondence, and we use the structure of Norton’s monstralizer pairs more generally to organize our presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A subquotient is a quotient of a subgroup.

  2. A group is said to be perfect if it admits no non-trivial abelian quotients. In particular, any non-abelian simple group is a perfect group.

  3. In this paper, \({\textit{V}}{\mathbb {B}}^\natural \) will always denote a \({\mathbb {Z}}\)-graded VOA. This differs slightly from Höhn’s \(\frac{1}{2}{\mathbb {Z}}\)-graded vertex operator super algebra, which is constructed by taking a direct sum of \({\textit{V}}{\mathbb {B}}^\natural \) and its unique irreducible module of highest weight \(\frac{3}{2}\).

  4. The notation \({\textit{VF}}^\natural \) was used in [28], though we use \({\textit{VF}}_{24}^\natural \) in anticipation of our construction of similar VOAs \({\textit{VF}}_{23}^\natural \) and \({\textit{VF}}_{22}^\natural \) associated with the other Fischer groups \({\textit{Fi}}_{23}\) and \({\textit{Fi}}_{22}\).

  5. In particular, our examples are suggestive of the existence of a (unique) functor from the category of monstralizer pairs to the category of monstralizing commutant pairs.

  6. We use the convention that \(D_n\) is the symmetry group of a regular n-gon, i.e. \(|D_n|=2n\).

  7. A few of these algebras inherit an extra order 2 outer automorphism from the monster.

  8. Although the 4A and 2B cases involve the McLaughlin group and Conway’s second group, both of which belong to the happy family, we hesitate to give them the names \({\textit{VMcL}}^\natural \) and \({\textit{VCo}}_2^\natural \) in case it is possible in the future to define chiral algebras with \({\textit{McL}}\) and \({\textit{Co}}_2\) symmetry on the nose, as opposed to our current constructions which realize extensions of these groups.

  9. A subVOA \(\mathcal {W}\) need not have the same stress tensor as \(\mathcal {V}\). In the case that it does, we say that \(\mathcal {W}\) is a full subVOA.

  10. Technically there is a vector space of highest weight states, so e.g. \(\varphi ^{(\alpha )}\) should be thought of as carrying an extra index which we are suppressing.

  11. In fact, n is the order of X if X is non-anomalous; in general, n is some multiple of the order of X.

  12. We are not aware of a general condition which determines when such a lifting goes through, but we are confident that it does in all the cases that we invoke this structure.

  13. A simple-current is an operator J such that the OPE of J with any primary contains only a single term, which is itself a primary.

  14. Their fusion categories are “braid-reversed equivalent”

  15. At least for the Hecke operators considered in this paper, though they may generalize.

  16. Convergence of this sum has not been proven in general, however we conjecture that in all the cases we consider in this paper, the sum dooes in fact converge.

  17. Similar formulae appear in [91] for weight \(\frac{1}{2}\) vector-valued modular forms transforming in the Weil representation.

  18. We are not aware of any theorem that requires the highest weight subspaces of irreducible modules of a (suitably nice) VOA to transform as irreducible representations of the inner automorphism group, and we suspect that this niceness is related to the fact that \((G,{\widetilde{G}})\) form a monstralizer pair.

  19. In e.g. [27], the notation \({\textit{V}}{\mathbb {B}}^\natural \) is actually used to denote the vertex operator superalgebra obtained by taking a direct sum of \({\widetilde{\mathcal {W}}}_{{\mathbb {Z}}_{\mathrm {2A}}}\) with its irreducible module of highest weight \(\frac{3}{2}\). This VOSA has automorphism group \({\mathbb {Z}}_2 \times {\mathbb {B}}\), where the extra \({\mathbb {Z}}_2\) is generated by \((-1)^F\).

  20. Unlike in the case of the \(\widehat{E_8}\) correspondence, these VOAs are not always generated by their two central charge \(\frac{7}{10}\) conformal vectors.

  21. We use the notation \(N_G(S) = \{ g\in G \mid gS=Sg\} \) to denote the normalizer of the set S in G.

  22. This also justifies the consideration of the group \(3.{\textit{Fi}}'_{24}\) in [99].

  23. The integers \(\ell = 7, 11, 13, 17\) also satisfy \(23 + \ell ^2 = 0 \ \text {mod} \ 24\). However, \(G_7,\) \(G_{11},\) \(G_{13}\), and \(G_{17}\) have negative entries and so we do not consider them.

  24. Whenever a group has multiple irreducible representations of dimension d, we use the notation \({\mathbf {d}}_{(i)}\) to denote the ith irrep of dimension d, according to how they are ordered in Gap.

  25. The naive prediction from the monstralizer \([D_{\mathrm {2A}}\circ 2^2.{^2}{\textit{E}}_6(2)].S_3\) is that the full automorphism group should be \({^2}{\textit{E}}_6(2).S_3\) as opposed to \({^2}{\textit{E}}_6(2).2\). However, if one decomposes the Griess algebra \(V^\natural _2\) into representations of \({^2}{\textit{E}}_6(2).S_3\) one does not find any singlets besides the usual stress tensor, which indicates that a deconstruction is not possible. This example is the reason why we say in general that \(\mathrm {Aut}(\mathcal {W}_{{\widetilde{G}}}) = ({\widetilde{G}}/Z({\widetilde{G}})).H'\) for \(H'\) a subgroup of the group H which appears in the monstralizer \([G\circ {\widetilde{G}}].H\). It is the only example we consider for which \(H'\ne H\).

  26. Irreps of \(2.{^2}{\textit{E}}_6(2).2\) are the same as irreps of \(2^2.{^2}{\textit{E}}_6(2).2\) in which the central \({\mathbb {Z}}_2\) which is generated by the 2A conjugacy class acts trivially. In the Gap ordering, the first 320 irreps of \(2^2.{^2}{\textit{E}}_6(2).2\) map onto the irreps of \(2.{^2}{\textit{E}}_6(2).2\).

  27. In most examples, the bilinear which pairs \(\chi _\alpha \) with its Hecke images to produce the J-function can be obtained as a linear combination of the matrices \(G_\ell \) described in Sect. 2.3.2. This is one of the few instances for which this is not true, i.e. the matrix which relates \({\mathsf {T}}_{11}\chi \) to \({\widetilde{\chi }}\) cannot be realized as a linear combination of the matrices \((G_\ell )^T\). This suggests that there are modular invariant ways to combine characters with their Hecke images beyond the bilinears studied in [42], however we leave their study to future work.

  28. See Appendix C for an alternative derivation of these characters.

  29. We use the fact that \(2^{1+22}.{\textit{Co}}_2\) has a \({\mathbb {Z}}_2\) normal subgroup which leaves \(2^{22}.{\textit{Co}}_2\) after taking the quotient [114].

  30. The Niemeier lattices are the even, positive-definite, unimodular lattices of rank 24.

  31. The algebra e.g. \({\widetilde{\mathcal {W}}}_{B(\mathrm {1A})}\) is defined to be the commutant of \(\mathcal {W}_{B(\mathrm {1A})}\) in \({\textit{V}}{\mathbb {B}}^\natural \), while the algebra \({\widetilde{\mathcal {W}}}_{D_{\mathrm {2A}}}\) is defined to be the commutant of \(\mathcal {W}_{D_{\mathrm {2A}}}\) in \(V^\natural \); we hope that this notation will not cause confusion.

  32. The appearance of the module \(\mathcal {L}(\tfrac{6}{7},5)\) is related to the fact that the conformal vector is “derived.”

  33. Such a subalgebra exists, as proven in [66].

  34. We use the term fictitious because these characters e.g. do not lead to consistent fusion rules, and the bilinear they participate in, equation (C.5), has fractional coefficients \(\alpha _i\).

  35. C.f. the previous footnote.

References

  1. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: The ATLAS of finite groups. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  2. Griess, R.L., Jr.: The friendly giant. Invent. Math. 69(1), 1–102 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Witt, E.: “Die 5-fach transitiven gruppen von mathieu,” Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, volume 12, pp. 256–264. Springer (1937)

  4. Thompson, J.G.: A conjugacy theorem for \(\text{ E}_8\). J. Algebra 38(2), 525–530 (1976)

    MathSciNet  Google Scholar 

  5. Smith, P.E.: A simple subgroup of M? and \(\text{ E}_8\)(3). Bull. Lond. Math. Soc. 8(2), 161–165 (1976)

    ADS  Google Scholar 

  6. Frenkel, I.B., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess Monster with the modular function \(J\) as character. Proc. Nat. Acad. Sci. USA 81(10), 3256–3260 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Borcherds, R.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Frenkel, I.B., Lepowsky, J., Meurman, A.: A moonshine module for the Monster. In: Vertex Operators in Mathematics and Physics, Math. Sci. Res. Inst. Publ. 3, Springer, New York, pp. 231–273 (1985)

  9. Duncan, J.F.R.: Super-moonshine for Conway’s largest sporadic group. Duke Math. J. 139(2), 255–315 (2007)

  10. Duncan, J.F.R., Mack-Crane, S.: The Moonshine Module for Conway’s Group. SIGMA 3, e10 (2015)

  11. Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the K3 Surface and the Mathieu group \(M_{24}\). Exper. Math. 20, 91 (2011). arXiv:1004.0956

  12. Cheng, M.C.N.: K3 Surfaces, N=4 Dyons, and the Mathieu Group M24. Commun. Num. Theor. Phys. 4, 623 (2010). https://doi.org/10.4310/CNTP.2010.v4.n4.a2. arXiv:1005.5415 [hep-th]

  13. Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu Moonshine in the elliptic genus of K3. JHEP 1010, 062 (2010). https://doi.org/10.1007/JHEP10(2010)062. arXiv:1008.3778 [hep-th]

  14. Eguchi, T., Hikami, K.: Note on twisted elliptic genus of \(K3\) surface. Phys. Lett. B 694, 446 (2011). https://doi.org/10.1016/j.physletb.2010.10.017. arXiv:1008.4924 [hep-th]

  15. Gannon, T.: Much ado about Mathieu. Adv. Math. 301, 322 (2016). arXiv:1211.5531

  16. Cheng, M.C.N., Duncan, J.F.R., Harvey, J.A.: Umbral Moonshine. Commun. Num. Theor. Phys. 08, 101 (2014). https://doi.org/10.4310/CNTP.2014.v8.n2.a1. arXiv:1204.2779

  17. Cheng, M.C.N., Duncan, J.F.R., Harvey, J.A.: Umbral Moonshine and the Niemeier Lattices. Research in the Mathematical Sciences 1. arXiv:1307.5793 (2014)

  18. Duncan, J.F.R, Griffin, M.J., Ono, K.: Proof of the Umbral Moonshine Conjecture. Res. Math. Sci. 2, Art. 26 (2015). arXiv:1503.01472

  19. Harvey, J.A., Rayhaun, B.C.: Traces of singular moduli and moonshine for the Thompson group. Commun. Numer. Theor. Phys. 10, 23 (2016). arXiv:1504.08179

  20. Griffin, M.J., Mertens, M.: A proof of the Thompson Moonshine Conjecture. Res. Math. Sci. 3, no. One 36, (2016) arXiv:1607.03078

  21. Duncan, J.F.R., Mertens, M.H., Ono, K.: Pariah moonshine. Nat. Commun. 8(670) (2017)

  22. Norton, S.: Anatomy of the Monster I. In: The Atlas of Finite Groups–Ten Years on (1998)

  23. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur Lectures (1992)(Tel Aviv), pp. 1–182 (1995)

  24. Howe, R.: \(\theta \)-series and invariant theory, Automorphic Forms, Representations and \(L\)-Functions: Automorphic Forms. Represent. L-functions 1(Part 1), 275–285 (1979)

    Google Scholar 

  25. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Dong, C., Mason, G., Zhu, Y.: Discrete Series of the Virasoro Algebra and the Moonshine Module, Proc. of Symp. In: Pure Mathematics, Vol. 56, Part 2 (1994)

  27. Höhn, G.: “Selbstdual Vertesoperatorsuperalgebren und das Babymonster," Ph.D. thesis, Bonn University (1995). arXiv:0706.0236

  28. Höhn, G., Lam, C.H., Yamauchi, H.: Mckay’s E6 observation on the largest Fischer group. Commun. Math. Phys. 310(2), 329–365 (2012)

  29. Goddard, P., Kent, A., Olive, D.I.: Virasoro Algebras and coset space models. Phys. Lett. 152B, 88 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Goddard, P., Kent, A., Olive, D.I.: Unitary representations of the Virasoro and Supervirasoro Algebras. Commun. Math. Phys. 103, 105 (1986)

    ADS  MATH  Google Scholar 

  31. Fateev, V.A., Zamolodchikov, A.B.: Conformal quantum field theory models in two dimensions having \({\mathbb{Z}}_3\) symmetry. Nucl. Phys. B 280, 644–660 (1987)

    ADS  Google Scholar 

  32. Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with \({\mathbb{Z}}_n\) symmetry. Int. J. Mod. Phys. A 3, 507 (1988)

    ADS  Google Scholar 

  33. Conway, J.H.: A simple construction for the Fischer-Griess monster group. Invent. Math. 79(3), 513–540 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Sakuma, S.: 6-transposition property of \(\tau \)-involutions of vertex operator algebras, arXiv:math/0608709

  35. Griess, R.L., Jr., Lam, C.H.: \( EE_8\)-lattices and dihedral groups. Pure Appl. Math. Q. 7(3), 621–743 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Miyamoto, M.: VOAs generated by two conformal vectors whose \(\tau \)-involutions generate \(S_3\). J. Algebra 268(2), 653–671 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Sakuma, S., Yamauchi, H.: Vertex operator algebra with two Miyamoto involutions generating \(S_3\). J. Algebra 267(1), 272–297 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Lam, C.H., Yamada, H., Yamauchi, H.: McKay’s observation and vertex operator algebras generated by two conformal vectors of central charge \(1/2\). Int Math Res Papers 2005, 117 (2005). arXiv:math/0503239

  39. Miyamoto, M.: Griess Algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 523 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur-Weyl duality for Heisenberg cosets. Transform. Groups 24(2), 301–354 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Lin, X.: Mirror extensions of rational vertex operator algebras. Trans. Am. Math. Soc. 369(6), 3821–3840 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Harvey, J.A., Wu, Y.: Hecke relations in rational conformal field theory. JHEP 1809, 032 (2018). arXiv:1804.06860

  43. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves, Number 88, American Mathematical Soc. (2004)

  44. Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, Berlin (2012)

    MATH  Google Scholar 

  45. Ginsparg, P.: Applied conformal field theory. arXiv:hep-th/9108028

  46. Dong, C.Y., Mason, G.: Nonabelian orbifolds and the Boson-Fermion correspondence. Commun. Math. Phys. 163, 523 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177–254 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    ADS  MATH  Google Scholar 

  50. Dong, C.Y., Li, H.S., Mason, G.: Modular invariance of trace functions in orbifold theory. Commun. Math. Phys. 214, 1 (2000). arXiv:q-alg/9703016

  51. Dong, C.Y., Zhao, Z.P.: Modularity in orbifold theory for vertex operator superalgebras. Commun. Math. Phys. 260, 227 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Dixon, L.J., Ginsparg, P.H., Harvey, J.A.: Beauty and the beast: Superconformal symmetry in a monster module. Commun. Math. Phys. 119, 221 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster, vol. 134. Academic Press, London (1989)

    MATH  Google Scholar 

  54. Lam, C.H., Lam, N., Yamauchi, H.: Extension of unitary virasoro vertex operator algebra by a simple module. Int. Math. Res. Not. 2003(11), 577–611 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Teor. Mat. Fiz. 65(3), 347–359 (1985)

    Google Scholar 

  56. Mercat, C., Pearce, P.A.: Integrable and conformal boundary conditions for \({\mathbb{Z}}_k\) parafermions on a cylinder. J. Phys. A 34, 5751 (2001). arXiv:hep-th/0103232

  57. Dolan, L., Goddard, P., Montague, P.: Conformal field theories, representations and lattice constructions. Commun. Math. Phys. 179, 61 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Dijkgraaf, R., Vafa, C., Verlinde, E.P., Verlinde, H.L.: The Operator Algebra of Orbifold Models. Commun. Math. Phys. 123, 485 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Dong, C., Nagatomo, K.: Representations of vertex operator algebra \(V_L^+\) for rank one lattice \(L\). Commun. Math. Phys. 202(1), 169–195 (1999)

    ADS  MATH  Google Scholar 

  61. Abe, T., Dong, C.: Classification of irreducible modules for the vertex operator algebra \(V_L^+\): general case. J. Algebra 273(2), 657–685 (2004)

    MathSciNet  MATH  Google Scholar 

  62. Gepner, D.: Exactly solvable string compactifications on manifolds of SU(N) Holonomy. Phys. Lett. B 199, 380 (1987)

    ADS  MathSciNet  Google Scholar 

  63. Dong, C., Griess, R.L., Jr., Hoehn, G.: Framed vertex operator algebras, codes and the moonshine module. Commun. Math. Phys. 193, 407 (1998). arXiv:q-alg/9707008

  64. Ginsparg, P.H.: Curiosities at \(c = 1\). Nucl. Phys. B 295, 153 (1988)

    ADS  MathSciNet  Google Scholar 

  65. Dixon, L., Harvey, J.A.: unpublished

  66. Dong, C., Li, H., Mason, G., Norton, S.P.: Associative subalgebras of the griess algebra and related topics, In: Proceedings of the Conference on the Monster and Lie algebras at the Ohio State University, pp 27–42 (1996)

  67. Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras. arXiv:1906.00119

  68. Mathur, S., Mukhi, S., Sen, A.: On the classification of rational conformal field theories. Phys. Lett. B 213, 303 (1988)

    ADS  MathSciNet  Google Scholar 

  69. Mukhi, S.: Classification of RCFT from Holomorphic Modular Bootstrap. A Status Report, arXiv:1910.02973

  70. Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. In: Lie Groups, Geometry, and Representation Theory, pp. 41–57. Springer (2018)

  71. Gaberdiel, M.R., Keller, C.A.: Modular differential equations and null vectors. J. High Energy Phys. 2008(09), 079 (2008)

    MathSciNet  MATH  Google Scholar 

  72. Beem, C., Rastelli, L.: Vertex operator algebras, Higgs branches, and modular differential equations. J. High Energy Phys. 2018(8), 114 (2018)

    MathSciNet  MATH  Google Scholar 

  73. Franc, C., Mason, G.: Hypergeometric series, modular linear differential equations, and vector-valued modular forms. Ramanujan J. 41(1–3), 233–267 (2016)

    MathSciNet  MATH  Google Scholar 

  74. Bantay, P.: The kernel of the modular representation and the Galois action in RCFT. Commun. Math. Phys. 233, 423 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Poincaré, H.: Fonctions modulaires et fonctions fuchsiennes. Ann. de la Faculté des Sci. de Toulouse: Mathé. 3, 125–149 (1911)

    MathSciNet  MATH  Google Scholar 

  76. Rademacher, H.: The Fourier coefficients of the modular invariant \(J(\tau )\). Am. J. Math. 60(2), 501–512 (1938)

    MathSciNet  MATH  Google Scholar 

  77. Rademacher, H.: On the partition function \(p(n)\). Proc. Lond. Math. Soc. 2(1), 241–254 (1938)

    MATH  Google Scholar 

  78. Niebur, D.: Construction of automorphic forms and integrals. Trans. Am. Math. Soc. 191, 373–385 (1974)

    MathSciNet  MATH  Google Scholar 

  79. Whalen, D.: “Vector-valued Rademacher sums and automorphic integrals,” arXiv preprint arXiv:1406.0571 (2014)

  80. Duncan, J.F., Frenkel, I.B.: Rademacher sums, Moonshine and Gravity. Commun. Num. Theor. Phys. 5, 849 (2011). https://doi.org/10.4310/CNTP.2011.v5.n4.a4. arXiv:0907.4529 [math.RT]

  81. Cheng, M.C.N., Duncan, J.F.R.: On Rademacher Sums, the Largest Mathieu Group, and the Holographic Modularity of Moonshine. Commun. Num. Theor. Phys. 6, 697 (2012). https://doi.org/10.4310/CNTP.2012.v6.n3.a4. arXiv:1110.3859 [math.RT]

  82. Dijkgraaf, R., Maldacena, J., Moore, G., Verlinde, E.: “A black hole farey tail,” arXiv preprint arXiv:hep-th/0005003 (2000)

  83. de Boer, J., Cheng, M.C.N., Dijkgraaf, R., Manschot, J., Verlinde, E.: A Farey Tail for Attractor Black Holes. JHEP 0611, 024 (2006). https://doi.org/10.1088/1126-6708/2006/11/024. arXiv:hep-th/0608059

  84. Manschot, J., Moore, G.W.: A Modern Farey Tail. Commun. Num. Theor. Phys. 4, 103 (2010). https://doi.org/10.4310/CNTP.2010.v4.n1.a3. arXiv:0712.0573 [hep-th]

  85. Maloney, A., Maxfield, H., Ng, G.S.: A conformal block Farey tail. JHEP 1706, 117 (2017). https://doi.org/10.1007/JHEP06(2017)117. arXiv:1609.02165 [hep-th]

  86. Alday, L.F., Bae, J.: Rademacher Expansions and the Spectrum of 2d CFT. arXiv:2001.00022 [hep-th]

  87. Nally, R.: Exact half-BPS black hole entropies in CHL models from Rademacher series. J. High Energy Phys. 2019(1), 60 (2019)

    MathSciNet  MATH  Google Scholar 

  88. Ferrari, F., Harrison, S.M.: Properties of extremal CFTs with small central charge. arXiv:1710.10563 [hep-th]

  89. Cheng, M.C.N., Duncan, J.F.R.: Rademacher sums and Rademacher series. In: Conformal Field Theory, Automorphic Forms and Related Topics, pp. 143–182. Springer (2014)

  90. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186 (1986). https://doi.org/10.1016/0550-3213(86)90552-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Duncan, J.F.R., Harvey, J.A., Rayhaun, B.C.: “An overview of penumbral moonshine,” in preparation

  92. Conway, J.H., Norton, S.P.: Monstrous Moonshine. Bull. Lond. Math. Soc. 11, 308 (1979)

    MathSciNet  MATH  Google Scholar 

  93. McKay, J.: “Graphs, singularities and finite groups," The Santa Cruz Conference on Finite Groups (Santa Cruz, 1979), Proc. Symp. Pure Math. vol. 37, Amer. Math. Soc., Providence RI, pp. 183–186 (1980)

  94. Glauberman, G., Norton, S.P.: “On McKay’s connection between the affine \(E_8\) diagram and the Monster," CRM Proceedings and Lecture Notes, 30, (2001)

  95. Griess Jr., R.: Research topics in finite groups and vertex algebras, arXiv:1903.08805

  96. Höhn, G.: The group of symmetries of the shorter moonshine module. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 80, pp. 275–283. Springer, Berlin (2010)

  97. Yamauchi, H.: 2A-orbifold construction and the baby-monster vertex operator superalgebra. J. Algebra 284(2), 645–668 (2005)

    MathSciNet  MATH  Google Scholar 

  98. Höhn, G., Lam, C.H., Yamauchi, H.: Mckay’s E7 observation on the baby monster. International Mathematics Research Notices 2012(1), 166–212 (2012)

  99. Bae, J., Lee, K., Lee, S.: Monster Anatomy. JHEP 1907, 026 (2019). arXiv:1811.12263

  100. Hampapura, H., Mukhi, S.: Two-dimensional RCFT’s without Kac-Moody symmetry,. JHEP 1607, 138 (2016). arXiv:1605.03314

  101. Shimakura, H.: Decompositions of the moonshine module with respect to subVOAs associated to codes over \({\mathbb{Z}}_{2k}\). J. Algebra 251(1), 308–322 (2002)

    MathSciNet  MATH  Google Scholar 

  102. Höhn, G., Mason, G.: The 290 fixed-point sublattices of the Leech lattice. J. Algebra 448, 628–637 (2016)

    MathSciNet  MATH  Google Scholar 

  103. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). (Computational algebra and number theory (London, 1993))

  104. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  105. Meyer, W., Neutsch, W.: Associative Subalgebras of the Griess Algebra. J. Algebra 158, 1–17 (1993)

    MathSciNet  MATH  Google Scholar 

  106. Lam, C.H., Yamada, H.: \({\mathbb{Z}}_2\times {\mathbb{Z}}_2\) codes and vertex operator algebras. J. Algebra 224(2), 268–291 (2000)

    MathSciNet  Google Scholar 

  107. Wilson, R.A.: The maximal subgroups of the baby monster, I. J. Algebra 211(1), 1–14 (1999)

    MathSciNet  MATH  Google Scholar 

  108. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.8; (2017). https://www.gap-system.org

  109. Linton, S.A., Wilson, R.A.: The maximal subgroups of the Fischer groups \({Fi}_{24}\) and \(Fi^{prime }_{24}\). Proc. Lond. Math. Soc. 3(1), 113–164 (1991)

    MATH  Google Scholar 

  110. Abe, T.: Fusion rules for the charge conjugation orbifold. J. Algebra 2(242), 624–655 (2001)

    MathSciNet  MATH  Google Scholar 

  111. Abe, T., Dong, C., Li, H.: Fusion rules for the vertex operator algebras \(M(1)^+\) and \(V_L^+\). Commun. Math. Phys. 253(1), 171–219 (2005)

    ADS  MATH  Google Scholar 

  112. Dong, C., Zheng, W.: Uniqueness of VOA structure of 3C-algebra and 5A-algebra, arXiv:2002.11482

  113. Dong, C., Jiao, X., Yu, N.: 6\(A\)-Algebra and its representations. J. Algebra 533, 174 (2019). https://doi.org/10.1016/j.jalgebra.2019.06.003. arXiv:1902.06951 [math.QA]

  114. Pahlings, H.: The character table of \(2_+^{1+ 22}.{Co}_2\). J. Algebra 315(1), 301–325 (2007)

    MathSciNet  MATH  Google Scholar 

  115. Lin, Y.H., Shao, S.H.: Duality Defect of the Monster CFT, arXiv:1911.00042

  116. Johnson-Freyd, T.: Supersymmetry and the Suzuki chain, arXiv:1908.11012

  117. SageMath, the Sage Mathematics Software System (Version 8.8). The Sage Developers (2019). https://www.sagemath.org

Download references

Acknowledgements

We thank G. Mason for very helpful correspondence and understand that he and C. Franc have also been looking at commutants of subVOAs of \(V^\natural \). We also thank L. F. Alday, H. Choi, S. Harrison, T. Johnson-Freyd, B. Julia, Y. Lin, G. Moore, J. Sempliner, S. Shao, and Y. Wu for discussions. JH would like to thank L. Dixon for collaboration on deconstructing CFTs roughly thirty years ago. JH and SL gratefully acknowledge the hospitality of the Aspen Center for Physics (under NSF Grant No. PHY-1066293) for providing an excellent atmosphere for collaboration. We have made use of Gap [108], Sage [117], and Magma [103] for various computational aspects of our analysis. JH acknowledges support from the NSF(Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.) under grant PHY 1520748. BR gratefully acknowledges support from the NSF under grant PHY 1720397. KL and SL are supported in part by KIAS Individual Grants PG006904 and PG056502, and by the National Research Foundation of Korea Grants NRF2017R1D1A1B06034369 and NRF2017R1C1B1011440. The work of JB is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No. 787185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Harvey.

Additional information

Communicated by C. Schweigert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Fusion Rules for the \({\widetilde{\mathcal {W}}}_{D_{n\mathrm {X}}}\) Algebras

In this appendix, we present the fusion rules for some of the theories discussed in the main text. The structure constants \(\mathcal {N}_{\alpha \beta }^{\gamma }\) are computed using the S-matrix of each theory and the Verlinde formula, equation (2.17). It turns out that each theory has \(\mathcal {N}_{\alpha \beta }^{\gamma } = 0 \ \text {or} \ 1\) for all \(\alpha ,\beta ,\gamma \). In the cases that we used the block-diagonalization method to determine the characters of our models (c.f. Sect. 2.1.2), the consistency of the fusion rules provides a non-trivial check on our results. Because fusion algebra is associative, \(\mathcal {N}_{\alpha \beta }^{\gamma } = 1\) imposes that \(\mathcal {N}_{\beta \alpha }^{\gamma } = 1\). Below, we present all the non-vanishing fusion algebra coefficients of the five theories in Sects.  3.2.2, 3.2.3, 3.2.9, 3.2.5 and 3.2.6.

1.1 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \({\widetilde{\mathcal {W}}}_{D_{\mathrm {2A}}}\):

$$\begin{aligned} \begin{aligned}&\mathcal {N}_{00}^{0} ,\ \mathcal {N}_{01}^{1},\ \mathcal {N}_{02}^{2},\ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4},\ \mathcal {N}_{05}^{5},\ \mathcal {N}_{06}^{6},\ \mathcal {N}_{07}^{7} , \ \mathcal {N}_{11}^{0},\ \mathcal {N}_{11}^{1},\ \mathcal {N}_{12}^{5},\ \mathcal {N}_{13}^{6},\ \mathcal {N}_{14}^{7}, \\&\mathcal {N}_{15}^{2},\ \mathcal {N}_{15}^{5}, \ \mathcal {N}_{16}^{3}, \ \mathcal {N}_{16}^{6},\ \mathcal {N}_{17}^{4},\ \mathcal {N}_{17}^{7},\ \mathcal {N}_{22}^{0},\ \mathcal {N}_{23}^{4},\ \mathcal {N}_{24}^{3},\ \mathcal {N}_{25}^{1},\ \mathcal {N}_{26}^{7}, \ \mathcal {N}_{27}^{6},\ \mathcal {N}_{33}^{0}, \\&\mathcal {N}_{34}^{2},\ \mathcal {N}_{35}^{7},\ \mathcal {N}_{36}^{1},\ \mathcal {N}_{37}^{5},\ \mathcal {N}_{44}^{0},\ \mathcal {N}_{45}^{6}, \ \mathcal {N}_{46}^{5},\ \mathcal {N}_{47}^{1},\ \mathcal {N}_{55}^{0},\ \mathcal {N}_{55}^{1},\ \mathcal {N}_{56}^{4},\ \mathcal {N}_{56}^{7},\ \mathcal {N}_{57}^{3}, \\&\mathcal {N}_{57}^{6}, \ \mathcal {N}_{66}^{0},\ \mathcal {N}_{66}^{1},\ \mathcal {N}_{67}^{2},\ \mathcal {N}_{67}^{5},\ \mathcal {N}_{77}^{0},\ \mathcal {N}_{77}^{1}. \end{aligned} \end{aligned}$$
(A.1)

1.2 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \( {{\textit{VT}}}^\natural \):

$$\begin{aligned} \begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{11}^{0} ,\ \mathcal {N}_{11}^{1} , \ \mathcal {N}_{11}^{2} , \ \mathcal {N}_{12}^{1} , \ \mathcal {N}_{12}^{2} , \ \mathcal {N}_{12}^{3} , \ \mathcal {N}_{13}^{2} , \ \mathcal {N}_{13}^{3} , \\&\mathcal {N}_{13}^{4} ,\ \mathcal {N}_{14}^{3} , \ \mathcal {N}_{14}^{4} , \ \mathcal {N}_{22}^{0} , \ \mathcal {N}_{22}^{1} , \ \mathcal {N}_{22}^{2} , \ \mathcal {N}_{22}^{3} , \ \mathcal {N}_{22}^{4} , \ \mathcal {N}_{23}^{1} ,\ \mathcal {N}_{23}^{2} , \ \mathcal {N}_{23}^{3} , \ \mathcal {N}_{23}^{4} , \ \mathcal {N}_{24}^{2} , \\&\mathcal {N}_{24}^{3} , \ \mathcal {N}_{33}^{0} , \ \mathcal {N}_{33}^{1} , \ \mathcal {N}_{33}^{2} ,\ \mathcal {N}_{33}^{3} , \ \mathcal {N}_{34}^{1} , \ \mathcal {N}_{34}^{2} , \ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{1} . \end{aligned} \end{aligned}$$
(A.2)

1.3 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \( {{\textit{VHN}}}^\natural \):

$$\begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{05}^{5} ,\ \mathcal {N}_{06}^{6} , \ \mathcal {N}_{07}^{7} , \ \mathcal {N}_{08}^{8} , \ \mathcal {N}_{11}^{0} , \ \mathcal {N}_{11}^{3} , \ \mathcal {N}_{12}^{5} , \ \mathcal {N}_{13}^{1} , \nonumber \\&\mathcal {N}_{13}^{3} ,\ \mathcal {N}_{14}^{7} , \ \mathcal {N}_{15}^{2} , \ \mathcal {N}_{15}^{6} , \ \mathcal {N}_{16}^{5} , \ \mathcal {N}_{16}^{6} , \ \mathcal {N}_{17}^{4} , \ \mathcal {N}_{17}^{8} , \ \mathcal {N}_{18}^{7} ,\ \mathcal {N}_{18}^{8} , \ \mathcal {N}_{22}^{0} , \ \mathcal {N}_{22}^{4} , \ \mathcal {N}_{23}^{6} , \nonumber \\&\mathcal {N}_{24}^{2} , \ \mathcal {N}_{24}^{4} , \ \mathcal {N}_{25}^{1} , \ \mathcal {N}_{25}^{7} ,\ \mathcal {N}_{26}^{3} , \ \mathcal {N}_{26}^{8} ,\ \mathcal {N}_{27}^{5} , \ \mathcal {N}_{27}^{7} , \ \mathcal {N}_{28}^{6} , \ \mathcal {N}_{28}^{8} , \ \mathcal {N}_{33}^{0} , \ \mathcal {N}_{33}^{1} ,\ \mathcal {N}_{33}^{3} , \nonumber \\&\mathcal {N}_{34}^{8} ,\ \mathcal {N}_{35}^{5} , \ \mathcal {N}_{35}^{6} , \ \mathcal {N}_{36}^{2} , \ \mathcal {N}_{36}^{5} , \ \mathcal {N}_{36}^{6} , \ \mathcal {N}_{37}^{7} ,\ \mathcal {N}_{37}^{8} , \ \mathcal {N}_{38}^{4} , \ \mathcal {N}_{38}^{7} , \ \mathcal {N}_{38}^{8} , \ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{2} , \nonumber \\&\mathcal {N}_{44}^{4} , \ \mathcal {N}_{45}^{5} ,\ \mathcal {N}_{45}^{7} , \ \mathcal {N}_{46}^{6} , \ \mathcal {N}_{46}^{8} , \ \mathcal {N}_{47}^{1} , \ \mathcal {N}_{47}^{5} , \ \mathcal {N}_{47}^{7} , \ \mathcal {N}_{48}^{3} , \ \mathcal {N}_{48}^{6} ,\ \mathcal {N}_{48}^{8} , \ \mathcal {N}_{55}^{0} , \ \mathcal {N}_{55}^{3} , \nonumber \\&\mathcal {N}_{55}^{4} , \ \mathcal {N}_{55}^{8} , \ \mathcal {N}_{56}^{1} , \ \mathcal {N}_{56}^{3} , \ \mathcal {N}_{56}^{7} ,\ \mathcal {N}_{56}^{8} , \ \mathcal {N}_{57}^{2} , \ \mathcal {N}_{57}^{4} , \ \mathcal {N}_{57}^{6} , \ \mathcal {N}_{57}^{8} , \ \mathcal {N}_{58}^{5} , \ \mathcal {N}_{58}^{6} , \ \mathcal {N}_{58}^{7} , \nonumber \\&\mathcal {N}_{58}^{8} , \ \mathcal {N}_{66}^{0} ,\ \mathcal {N}_{66}^{1} , \ \mathcal {N}_{66}^{3} , \ \mathcal {N}_{66}^{4} , \ \mathcal {N}_{66}^{7} , \ \mathcal {N}_{66}^{8} , \ \mathcal {N}_{67}^{5} ,\ \mathcal {N}_{67}^{6} , \ \mathcal {N}_{67}^{7} , \ \mathcal {N}_{67}^{8} , \ \mathcal {N}_{68}^{2} , \ \mathcal {N}_{68}^{4} , \nonumber \\&\mathcal {N}_{68}^{5} , \ \mathcal {N}_{68}^{6} , \ \mathcal {N}_{68}^{7} ,\ \mathcal {N}_{68}^{8} , \ \mathcal {N}_{77}^{0} , \ \mathcal {N}_{77}^{2} , \ \mathcal {N}_{77}^{3} , \ \mathcal {N}_{77}^{4} , \ \mathcal {N}_{77}^{6} , \ \mathcal {N}_{77}^{8} , \ \mathcal {N}_{78}^{1} ,\ \mathcal {N}_{78}^{3} , \ \mathcal {N}_{78}^{5} , \nonumber \\&\mathcal {N}_{78}^{6} , \ \mathcal {N}_{78}^{7} , \ \mathcal {N}_{78}^{8} , \ \mathcal {N}_{88}^{0} , \ \mathcal {N}_{88}^{1} , \ \mathcal {N}_{88}^{2} ,\ \mathcal {N}_{88}^{3} , \ \mathcal {N}_{88}^{4} , \ \mathcal {N}_{88}^{5} , \ \mathcal {N}_{88}^{6} , \ \mathcal {N}_{88}^{7} , \ \mathcal {N}_{88}^{8} . \end{aligned}$$
(A.3)

1.4 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \( {{\textit{VF}}}_{23}^\natural \):

$$\begin{aligned} \begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{05}^{5} , \ \mathcal {N}_{11}^{0} , \ \mathcal {N}_{11}^{2} , \ \mathcal {N}_{12}^{1} , \ \mathcal {N}_{12}^{2} , \ \mathcal {N}_{13}^{4} , \ \mathcal {N}_{14}^{3} , \ \mathcal {N}_{14}^{5} , \\&\mathcal {N}_{15}^{4} , \ \mathcal {N}_{15}^{5} , \ \mathcal {N}_{22}^{0} , \ \mathcal {N}_{22}^{1} , \ \mathcal {N}_{22}^{2} , \ \mathcal {N}_{23}^{5} , \ \mathcal {N}_{24}^{4} , \ \mathcal {N}_{24}^{5} , \ \mathcal {N}_{25}^{3} , \ \mathcal {N}_{25}^{4} , \ \mathcal {N}_{25}^{5} , \ \mathcal {N}_{33}^{0} , \ \mathcal {N}_{33}^{3} , \\&\mathcal {N}_{34}^{1} , \ \mathcal {N}_{34}^{4} , \ \mathcal {N}_{35}^{2} , \ \mathcal {N}_{35}^{5} , \ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{2} , \ \mathcal {N}_{44}^{3} , \ \mathcal {N}_{44}^{5} , \ \mathcal {N}_{45}^{1} , \ \mathcal {N}_{45}^{2} , \ \mathcal {N}_{45}^{4} , \ \mathcal {N}_{45}^{5} , \ \mathcal {N}_{55}^{0} , \\&\mathcal {N}_{55}^{1} , \ \mathcal {N}_{55}^{2} , \ \mathcal {N}_{55}^{3} , \ \mathcal {N}_{55}^{4} , \ \mathcal {N}_{55}^{5} . \end{aligned} \end{aligned}$$
(A.4)

1.5 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \( {{\textit{VF}}}^\natural _{22}\):

$$\begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{05}^{5} ,\ \mathcal {N}_{06}^{6} , \ \mathcal {N}_{07}^{7} , \ \mathcal {N}_{08}^{8} , \ \mathcal {N}_{09}^{9} , \ \mathcal {N}_{0,10}^{10} , \ \mathcal {N}_{0,11}^{11} , \ \mathcal {N}_{0,12}^{12} , \nonumber \\&\mathcal {N}_{0,13}^{13} ,\ \mathcal {N}_{11}^{0} , \ \mathcal {N}_{11}^{1} , \ \mathcal {N}_{11}^{2} , \ \mathcal {N}_{12}^{1} , \ \mathcal {N}_{12}^{2} , \ \mathcal {N}_{12}^{3} , \ \mathcal {N}_{13}^{2} , \ \mathcal {N}_{14}^{4} ,\ \mathcal {N}_{14}^{5} , \ \mathcal {N}_{14}^{6} , \ \mathcal {N}_{15}^{4} , \ \mathcal {N}_{15}^{5} , \nonumber \\&\mathcal {N}_{15}^{7} , \ \mathcal {N}_{16}^{4} , \ \mathcal {N}_{17}^{5} , \ \mathcal {N}_{18}^{9} ,\ \mathcal {N}_{18}^{10} , \ \mathcal {N}_{19}^{8} ,\ \mathcal {N}_{19}^{10} , \ \mathcal {N}_{1,10}^{8} , \ \mathcal {N}_{1,10}^{9} , \ \mathcal {N}_{1,10}^{10} , \ \mathcal {N}_{1,11}^{11} , \ \mathcal {N}_{1,11}^{12} ,\ \mathcal {N}_{1,11}^{13} , \nonumber \\&\mathcal {N}_{1,12}^{11} ,\ \mathcal {N}_{1,12}^{13} , \ \mathcal {N}_{1,13}^{11} , \ \mathcal {N}_{1,13}^{12} , \ \mathcal {N}_{22}^{0} , \ \mathcal {N}_{22}^{1} , \ \mathcal {N}_{22}^{2} ,\ \mathcal {N}_{23}^{1} , \ \mathcal {N}_{24}^{4} , \ \mathcal {N}_{24}^{5} , \ \mathcal {N}_{24}^{7} , \ \mathcal {N}_{25}^{4} , \ \mathcal {N}_{25}^{5} , \nonumber \\&\mathcal {N}_{25}^{6} , \ \mathcal {N}_{26}^{5} ,\ \mathcal {N}_{27}^{4} , \ \mathcal {N}_{28}^{8} , \ \mathcal {N}_{28}^{10} , \ \mathcal {N}_{29}^{9} , \ \mathcal {N}_{29}^{10} , \ \mathcal {N}_{2,10}^{8} , \ \mathcal {N}_{2,10}^{9} , \ \mathcal {N}_{2,10}^{10} ,\ \mathcal {N}_{2,11}^{11} , \ \mathcal {N}_{2,11}^{12} , \ \mathcal {N}_{2,11}^{13} , \nonumber \\&\mathcal {N}_{2,12}^{11} , \ \mathcal {N}_{2,12}^{12} , \ \mathcal {N}_{2,13}^{11} , \ \mathcal {N}_{2,13}^{13} , \ \mathcal {N}_{33}^{0} ,\ \mathcal {N}_{34}^{5} , \ \mathcal {N}_{35}^{4} , \ \mathcal {N}_{36}^{7} , \ \mathcal {N}_{37}^{6} , \ \mathcal {N}_{38}^{9} , \ \mathcal {N}_{39}^{8} , \ \mathcal {N}_{3,10}^{10} , \ \mathcal {N}_{3,11}^{11} , \nonumber \\&\mathcal {N}_{3,12}^{13} , \ \mathcal {N}_{3,13}^{12} ,\ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{1} , \ \mathcal {N}_{44}^{2} , \ \mathcal {N}_{44}^{4} , \ \mathcal {N}_{44}^{5} , \ \mathcal {N}_{44}^{7} ,\ \mathcal {N}_{45}^{1} , \ \mathcal {N}_{45}^{2} , \ \mathcal {N}_{45}^{3} , \ \mathcal {N}_{45}^{4} , \ \mathcal {N}_{45}^{5} , \nonumber \\&\mathcal {N}_{45}^{6} , \ \mathcal {N}_{46}^{1} , \ \mathcal {N}_{46}^{5} ,\ \mathcal {N}_{47}^{2} , \ \mathcal {N}_{47}^{4} , \ \mathcal {N}_{48}^{11} , \ \mathcal {N}_{48}^{13} , \ \mathcal {N}_{49}^{11} , \ \mathcal {N}_{49}^{12} , \ \mathcal {N}_{4,10}^{11} , \ \mathcal {N}_{4,10}^{12} ,\ \mathcal {N}_{4,10}^{13} , \ \mathcal {N}_{4,11}^{8} , \nonumber \\&\mathcal {N}_{4,11}^{9} ,\ \mathcal {N}_{4,11}^{10} , \ \mathcal {N}_{4,11}^{11} , \ \mathcal {N}_{4,11}^{12} , \ \mathcal {N}_{4,11}^{13} , \ \mathcal {N}_{4,12}^{9} , \ \mathcal {N}_{4,12}^{10} ,\ \mathcal {N}_{4,12}^{11} , \ \mathcal {N}_{4,12}^{12} , \ \mathcal {N}_{4,13}^{8} , \ \mathcal {N}_{4,13}^{10} , \ \mathcal {N}_{4,13}^{11} , \nonumber \\&\mathcal {N}_{4,13}^{13} , \ \mathcal {N}_{55}^{0} , \ \mathcal {N}_{55}^{1} ,\ \mathcal {N}_{55}^{2} , \ \mathcal {N}_{55}^{4} , \ \mathcal {N}_{55}^{5} , \ \mathcal {N}_{55}^{7} , \ \mathcal {N}_{56}^{2} , \ \mathcal {N}_{56}^{4} , \ \mathcal {N}_{57}^{1} , \ \mathcal {N}_{57}^{5} ,\ \mathcal {N}_{58}^{11} , \ \mathcal {N}_{58}^{12} , \ \mathcal {N}_{59}^{11} , \nonumber \\&\mathcal {N}_{59}^{13} , \ \mathcal {N}_{5,10}^{11} , \ \mathcal {N}_{5,10}^{12} , \ \mathcal {N}_{5,10}^{13} , \ \mathcal {N}_{5,11}^{8} ,\ \mathcal {N}_{5,11}^{9} , \ \mathcal {N}_{5,11}^{10} , \ \mathcal {N}_{5,11}^{11} , \ \mathcal {N}_{5,11}^{12} , \ \mathcal {N}_{5,11}^{13} , \ \mathcal {N}_{5,12}^{8} , \ \mathcal {N}_{5,12}^{10} , \nonumber \\&\mathcal {N}_{5,12}^{11}, \ \mathcal {N}_{5,12}^{13} , \ \mathcal {N}_{5,13}^{9} ,\ \mathcal {N}_{5,13}^{10} , \ \mathcal {N}_{5,13}^{11} , \ \mathcal {N}_{5,13}^{12} , \ \mathcal {N}_{66}^{0} , \ \mathcal {N}_{66}^{7} , \ \mathcal {N}_{67}^{3} ,\ \mathcal {N}_{67}^{6} , \ \mathcal {N}_{68}^{12} , \ \mathcal {N}_{69}^{13} , \ \mathcal {N}_{6,10}^{11} , \nonumber \end{aligned}$$
$$\begin{aligned}&\mathcal {N}_{6,11}^{10} , \ \mathcal {N}_{6,12}^{8} , \ \mathcal {N}_{6,12}^{13} , \ \mathcal {N}_{6,13}^{9} ,\ \mathcal {N}_{6,13}^{12} , \ \mathcal {N}_{77}^{0} , \ \mathcal {N}_{77}^{7} , \ \mathcal {N}_{78}^{13} , \ \mathcal {N}_{79}^{12} , \ \mathcal {N}_{7,10}^{11} , \ \mathcal {N}_{7,11}^{10} , \ \mathcal {N}_{7,11}^{11} ,\nonumber \\&\mathcal {N}_{7,12}^{9} , \ \mathcal {N}_{7,12}^{12} , \ \mathcal {N}_{7,13}^{8}, \ \mathcal {N}_{7,13}^{13} , \ \mathcal {N}_{88}^{0} ,\ \mathcal {N}_{88}^{2} , \ \mathcal {N}_{89}^{1} , \ \mathcal {N}_{89}^{3} , \ \mathcal {N}_{8,10}^{1} , \ \mathcal {N}_{8,10}^{2} , \ \mathcal {N}_{8,11}^{4} ,\ \mathcal {N}_{8,11}^{5} , \nonumber \\&\mathcal {N}_{8,12}^{5} , \ \mathcal {N}_{8,12}^{6} , \ \mathcal {N}_{8,13}^{4} , \ \mathcal {N}_{8,13}^{7} , \ \mathcal {N}_{99}^{0} ,\ \mathcal {N}_{99}^{2} , \ \mathcal {N}_{9,10}^{1} , \ \mathcal {N}_{9,10}^{2} , \ \mathcal {N}_{9,11}^{4} , \ \mathcal {N}_{9,11}^{5} , \ \mathcal {N}_{9,12}^{4} , \ \mathcal {N}_{9,12}^{7} , \nonumber \\&\mathcal {N}_{9,13}^{5} , \ \mathcal {N}_{9,13}^{6} , \ \mathcal {N}_{10,10}^{0}, \ \mathcal {N}_{10,10}^{1} , \ \mathcal {N}_{10,10}^{2} ,\ \mathcal {N}_{10,10}^{3} , \ \mathcal {N}_{10,11}^{4} , \ \mathcal {N}_{10,11}^{5} , \ \mathcal {N}_{10,11}^{6} , \ \mathcal {N}_{10,11}^{7} , \nonumber \\&\mathcal {N}_{10,12}^{4} , \ \mathcal {N}_{10,12}^{5} , \ \mathcal {N}_{10,13}^{4} , \ \mathcal {N}_{10,13}^{5} , \ \mathcal {N}_{11,11}^{0} ,\ \mathcal {N}_{11,11}^{1} , \ \mathcal {N}_{11,11}^{2} , \ \mathcal {N}_{11,11}^{3} , \ \mathcal {N}_{11,11}^{4} , \ \mathcal {N}_{11,11}^{5} , \nonumber \\&\mathcal {N}_{11,11}^{6}, \ \mathcal {N}_{11,11}^{7} , \ \mathcal {N}_{11,12}^{1} , \ \mathcal {N}_{11,12}^{2} , \ \mathcal {N}_{11,12}^{4} , \ \mathcal {N}_{11,12}^{5} ,\ \mathcal {N}_{11,13}^{1} , \ \mathcal {N}_{11,13}^{2} , \ \mathcal {N}_{11,13}^{4} , \ \mathcal {N}_{11,13}^{5} , \nonumber \\&\mathcal {N}_{12,12}^{0} , \ \mathcal {N}_{12,12}^{2} , \ \mathcal {N}_{12,12}^{4} ,\ \mathcal {N}_{12,12}^{7} , \ \mathcal {N}_{12,13}^{1} , \ \mathcal {N}_{12,13}^{3} , \ \mathcal {N}_{12,13}^{5} , \ \mathcal {N}_{12,13}^{6} , \ \mathcal {N}_{13,13}^{0} , \ \mathcal {N}_{13,13}^{2} , \nonumber \\&\mathcal {N}_{13,13}^{4} , \ \mathcal {N}_{13,13}^{7}. \end{aligned}$$
(A.5)

1.6 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \({\widetilde{\mathcal {W}}}_{D_{\mathrm {4A}}}\):

$$\begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{05}^{5} ,\ \mathcal {N}_{06}^{6} , \ \mathcal {N}_{07}^{7} , \ \mathcal {N}_{08}^{8} , \ \mathcal {N}_{09}^{9} , \ \mathcal {N}_{0,10}^{10}, \ \mathcal {N}_{11}^{0}, \ \mathcal {N}_{12}^{2} \nonumber \\&\mathcal {N}_{13}^{3} ,\ \mathcal {N}_{14}^{4} , \ \mathcal {N}_{15}^{5} , \ \mathcal {N}_{16}^{6} , \ \mathcal {N}_{17}^{7} , \ \mathcal {N}_{18}^{8} , \ \mathcal {N}_{19}^{10} , \ \mathcal {N}_{1,10}^{9} , \ \mathcal {N}_{22}^{0} ,\ \mathcal {N}_{22}^{1} , \ \mathcal {N}_{22}^{3} , \ \mathcal {N}_{23}^{2} , \ \mathcal {N}_{23}^{3} , \nonumber \\&\mathcal {N}_{24}^{7} , \ \mathcal {N}_{24}^{8} , \ \mathcal {N}_{25}^{6} , \ \mathcal {N}_{25}^{8} ,\ \mathcal {N}_{26}^{5} , \ \mathcal {N}_{26}^{7} ,\ \mathcal {N}_{27}^{4} , \ \mathcal {N}_{27}^{6} , \ \mathcal {N}_{28}^{4} , \ \mathcal {N}_{28}^{5} , \ \mathcal {N}_{29}^{9} , \ \mathcal {N}_{29}^{10} ,\ \mathcal {N}_{2,10}^{9} , \nonumber \\&\mathcal {N}_{2,10}^{10} ,\ \mathcal {N}_{33}^{0} , \ \mathcal {N}_{33}^{1} , \ \mathcal {N}_{33}^{2} , \ \mathcal {N}_{34}^{5} , \ \mathcal {N}_{34}^{6} , \ \mathcal {N}_{35}^{4} ,\ \mathcal {N}_{35}^{7} , \ \mathcal {N}_{36}^{4} , \ \mathcal {N}_{36}^{8} , \ \mathcal {N}_{37}^{5} , \ \mathcal {N}_{37}^{8} , \ \mathcal {N}_{38}^{6} , \nonumber \\&\mathcal {N}_{38}^{7} , \ \mathcal {N}_{39}^{9} ,\ \mathcal {N}_{39}^{10} , \ \mathcal {N}_{3,10}^{9} , \ \mathcal {N}_{3,10}^{10} , \ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{1} , \ \mathcal {N}_{44}^{4} , \ \mathcal {N}_{45}^{3} , \ \mathcal {N}_{45}^{6} ,\ \mathcal {N}_{46}^{3} , \ \mathcal {N}_{46}^{5} , \ \mathcal {N}_{47}^{2} , \nonumber \\&\mathcal {N}_{47}^{8} , \ \mathcal {N}_{48}^{2} , \ \mathcal {N}_{48}^{7} , \ \mathcal {N}_{49}^{9} , \ \mathcal {N}_{49}^{10} ,\ \mathcal {N}_{4,10}^{9} , \ \mathcal {N}_{4,10}^{10} , \ \mathcal {N}_{55}^{0} , \ \mathcal {N}_{55}^{1} , \ \mathcal {N}_{55}^{8} , \ \mathcal {N}_{56}^{2} , \ \mathcal {N}_{56}^{4} , \ \mathcal {N}_{57}^{3} , \nonumber \\&\mathcal {N}_{57}^{7} , \ \mathcal {N}_{58}^{2} ,\ \mathcal {N}_{58}^{5} , \ \mathcal {N}_{59}^{9} , \ \mathcal {N}_{59}^{10} , \ \mathcal {N}_{5,10}^{9} , \ \mathcal {N}_{5,10}^{10} , \ \mathcal {N}_{66}^{0} ,\ \mathcal {N}_{66}^{1} , \ \mathcal {N}_{66}^{7} , \ \mathcal {N}_{67}^{2} , \ \mathcal {N}_{67}^{6} , \ \mathcal {N}_{68}^{3} , \nonumber \\&\mathcal {N}_{68}^{8} , \ \mathcal {N}_{69}^{9} , \ \mathcal {N}_{69}^{10} ,\ \mathcal {N}_{6,10}^{9} , \ \mathcal {N}_{6,10}^{10} , \ \mathcal {N}_{77}^{0} , \ \mathcal {N}_{77}^{1} , \ \mathcal {N}_{77}^{5} , \ \mathcal {N}_{78}^{4} , \ \mathcal {N}_{78}^{4} , \ \mathcal {N}_{79}^{9} ,\ \mathcal {N}_{79}^{10} , \ \mathcal {N}_{7,10}^{9} , \nonumber \\&\mathcal {N}_{7,10}^{10} , \ \mathcal {N}_{88}^{0} , \ \mathcal {N}_{88}^{1} , \ \mathcal {N}_{88}^{6} , \ \mathcal {N}_{89}^{9} , \ \mathcal {N}_{89}^{10} ,\ \mathcal {N}_{8,10}^{9} , \ \mathcal {N}_{8,10}^{10} , \ \mathcal {N}_{99}^{0} , \ \mathcal {N}_{99}^{2} , \ \mathcal {N}_{99}^{3} , \ \mathcal {N}_{99}^{4} ,\ \mathcal {N}_{99}^{5} ,\nonumber \\&\mathcal {N}_{99}^{6} , \ \mathcal {N}_{99}^{7} , \ \mathcal {N}_{99}^{8} , \ \mathcal {N}_{9,10}^{1} , \ \mathcal {N}_{9,10}^{2} , \ \mathcal {N}_{9,10}^{3} ,\ \mathcal {N}_{9,10}^{4} , \ \mathcal {N}_{9,10}^{5} , \ \mathcal {N}_{9,10}^{6} , \ \mathcal {N}_{9,10}^{7} , \ \mathcal {N}_{9,10}^{8} , \nonumber \\&\mathcal {N}_{10,10}^{0} , \ \mathcal {N}_{10,10}^{2} , \ \mathcal {N}_{10,10}^{3} , \ \mathcal {N}_{10,10}^{4} , \ \mathcal {N}_{10,10}^{5} , \ \mathcal {N}_{10,10}^{6} ,\ \mathcal {N}_{10,10}^{7} , \ \mathcal {N}_{10,10}^{8} \end{aligned}$$
(A.6)

1.7 List of non-vanishing \(\mathcal {N}_{\alpha \beta }^{\gamma }\) for \({\widetilde{\mathcal {W}}}_{D_{\mathrm {4B}}}\):

$$\begin{aligned} \begin{aligned}&\mathcal {N}_{00}^{0} , \ \mathcal {N}_{01}^{1} , \ \mathcal {N}_{02}^{2} , \ \mathcal {N}_{03}^{3} , \ \mathcal {N}_{04}^{4} , \ \mathcal {N}_{05}^{5} ,\ \mathcal {N}_{06}^{6} , \ \mathcal {N}_{07}^{7} , \ \mathcal {N}_{08}^{8} , \ \mathcal {N}_{09}^{9} , \ \mathcal {N}_{0,10}^{10}, \ \mathcal {N}_{0,11}^{11}, \ \mathcal {N}_{11}^{0} \\&\mathcal {N}_{12}^{6} ,\ \mathcal {N}_{13}^{7} , \ \mathcal {N}_{14}^{5} , \ \mathcal {N}_{15}^{4} , \ \mathcal {N}_{16}^{2} , \ \mathcal {N}_{17}^{3} , \ \mathcal {N}_{18}^{8} , \ \mathcal {N}_{19}^{9} , \ \mathcal {N}_{1,10}^{10} ,\ \mathcal {N}_{1,11}^{11} , \ \mathcal {N}_{22}^{0} , \ \mathcal {N}_{22}^{2} , \ \mathcal {N}_{23}^{4} , \\&\mathcal {N}_{24}^{3} , \ \mathcal {N}_{24}^{4} , \ \mathcal {N}_{25}^{5} , \ \mathcal {N}_{25}^{7} ,\ \mathcal {N}_{26}^{1} , \ \mathcal {N}_{26}^{6} ,\ \mathcal {N}_{27}^{5} , \ \mathcal {N}_{28}^{9} , \ \mathcal {N}_{29}^{8} , \ \mathcal {N}_{29}^{9} , \ \mathcal {N}_{2,10}^{11} , \ \mathcal {N}_{2,11}^{10} ,\ \mathcal {N}_{2,11}^{11} , \\&\mathcal {N}_{33}^{0} ,\ \mathcal {N}_{33}^{3} , \ \mathcal {N}_{34}^{2} , \ \mathcal {N}_{34}^{4} , \ \mathcal {N}_{35}^{5} , \ \mathcal {N}_{35}^{6} , \ \mathcal {N}_{36}^{5} ,\ \mathcal {N}_{37}^{1} , \ \mathcal {N}_{37}^{7} , \ \mathcal {N}_{38}^{10} , \ \mathcal {N}_{39}^{11} , \ \mathcal {N}_{3,10}^{8} , \ \mathcal {N}_{3,10}^{10} , \\&\mathcal {N}_{3,11}^{9} , \ \mathcal {N}_{3,11}^{11} ,\ \mathcal {N}_{44}^{0} , \ \mathcal {N}_{44}^{2} , \ \mathcal {N}_{44}^{3} , \ \mathcal {N}_{44}^{4} , \ \mathcal {N}_{45}^{1} , \ \mathcal {N}_{45}^{5} , \ \mathcal {N}_{45}^{6} , \ \mathcal {N}_{45}^{7} ,\ \mathcal {N}_{46}^{5} , \ \mathcal {N}_{46}^{7} , \ \mathcal {N}_{47}^{5} , \\&\mathcal {N}_{47}^{6} , \ \mathcal {N}_{48}^{11} , \ \mathcal {N}_{49}^{10} , \ \mathcal {N}_{49}^{11} , \ \mathcal {N}_{4,10}^{9} ,\ \mathcal {N}_{4,10}^{11} , \ \mathcal {N}_{4,11}^{8} , \ \mathcal {N}_{4,11}^{9} , \ \mathcal {N}_{4,11}^{10} , \ \mathcal {N}_{4,11}^{11} , \ \mathcal {N}_{55}^{0} , \ \mathcal {N}_{55}^{2} , \ \mathcal {N}_{55}^{3} , \\&\mathcal {N}_{55}^{4} , \ \mathcal {N}_{56}^{3} ,\ \mathcal {N}_{56}^{4} , \ \mathcal {N}_{57}^{2} , \ \mathcal {N}_{57}^{4} , \ \mathcal {N}_{58}^{11} , \ \mathcal {N}_{59}^{10} , \ \mathcal {N}_{59}^{11} ,\ \mathcal {N}_{5,10}^{9} , \ \mathcal {N}_{5,10}^{11} , \ \mathcal {N}_{5,11}^{8} , \ \mathcal {N}_{5,11}^{9} , \ \mathcal {N}_{5,11}^{10} , \\&\mathcal {N}_{5,11}^{11} , \ \mathcal {N}_{66}^{0} , \ \mathcal {N}_{66}^{2} ,\ \mathcal {N}_{67}^{4} , \ \mathcal {N}_{68}^{9} , \ \mathcal {N}_{69}^{8} , \ \mathcal {N}_{69}^{9} , \ \mathcal {N}_{6,10}^{11} , \ \mathcal {N}_{6,11}^{10} , \ \mathcal {N}_{6,11}^{11} , \ \mathcal {N}_{77}^{0} ,\ \mathcal {N}_{77}^{3} , \ \mathcal {N}_{78}^{10} , \\&\mathcal {N}_{79}^{11} , \ \mathcal {N}_{7,10}^{8} , \ \mathcal {N}_{7,10}^{10} , \ \mathcal {N}_{7,11}^{9} , \ \mathcal {N}_{7,11}^{11} , \ \mathcal {N}_{88}^{0} ,\ \mathcal {N}_{88}^{1} , \ \mathcal {N}_{89}^{2} , \ \mathcal {N}_{89}^{6} , \ \mathcal {N}_{8,10}^{3} , \ \mathcal {N}_{8,10}^{7} , \ \mathcal {N}_{8,11}^{4} ,\ \mathcal {N}_{8,11}^{5} ,\\&\mathcal {N}_{99}^{0} , \ \mathcal {N}_{99}^{1} , \ \mathcal {N}_{99}^{2} , \ \mathcal {N}_{99}^{6} , \ \mathcal {N}_{9,10}^{4} , \ \mathcal {N}_{9,10}^{5} ,\ \mathcal {N}_{9,11}^{3} , \ \mathcal {N}_{9,11}^{4} , \ \mathcal {N}_{9,11}^{5} , \ \mathcal {N}_{9,11}^{7} , \ \mathcal {N}_{10,10}^{0} , \\&\mathcal {N}_{10,10}^{1} , \ \mathcal {N}_{10,10}^{3} , \ \mathcal {N}_{10,10}^{7} , \ \mathcal {N}_{10,11}^{2} , \ \mathcal {N}_{10,11}^{4} , \ \mathcal {N}_{10,11}^{5} ,\ \mathcal {N}_{10,11}^{6} , \ \mathcal {N}_{11,11}^{0} ,\ \mathcal {N}_{11,11}^{1} , \ \mathcal {N}_{11,11}^{2},\\&\mathcal {N}_{11,11}^{3} , \ \mathcal {N}_{11,11}^{4} , \ \mathcal {N}_{11,11}^{5} , \ \mathcal {N}_{11,11}^{6} , \ \mathcal {N}_{11,11}^{7} \end{aligned} \end{aligned}$$
(A.7)

Group Theory Data

In this appendix we provide, for a few examples, the group theoretic data necessary for analyzing twined bilinears.

Let us start with a somewhat general discussion of how characters of \(\mathcal {W}\) and \({\widetilde{\mathcal {W}}}\), twined by inner automorphisms, can be bilinearly combined to produce twined characters of the VOA \(\mathcal {V}\) in which they sit as commutant pairs. We assume for simplicity that \(\mathcal {V}\) is a meromorphic CFT with partition function \(\mathcal {Z}\), that \(\mathrm {Inn}(\mathcal {W})\times \mathrm {Inn}({\widetilde{\mathcal {W}}})\subset \mathrm {Aut}(\mathcal {V})\), and that the inner automorphism groups are realized honestly on the modules of \(\mathcal {W}\) and \({\widetilde{\mathcal {W}}}\) which appear in the decomposition of \(\mathcal {V}\) (as opposed to projectively). Under these assumptions, there will be generalized bilinear relations of the form

$$\begin{aligned} \mathcal {Z}_{gh}(\tau ) = \sum _\alpha \chi _{g,\alpha }(\tau ){\widetilde{\chi }}_{h,\alpha }(\tau ) \end{aligned}$$
(B.1)

which arise by taking the graded trace of both sides of the decomposition

$$\begin{aligned} \mathcal {V}= \bigoplus _{\alpha }\mathcal {W}(\alpha )\otimes {\widetilde{\mathcal {W}}}(\alpha ). \end{aligned}$$
(B.2)

Because the graded characters are class functions of the associated groups, one only needs to know how the conjugacy classes of \(\mathrm {Inn}(\mathcal {W})\times \mathrm {Inn}({\widetilde{\mathcal {W}}})\) fuse into the conjugacy classes of \(\mathrm {Aut}(\mathcal {V})\). For illustrative purposes, we take \(\mathcal {V}=V^\natural \) and provide the necessary data for the cases \((\mathcal {W},{\widetilde{\mathcal {W}}}) = (\mathcal {W}_{5A},{\textit{VHN}}^\natural )\) and \((\mathcal {W}_{D_{\mathrm {3C}}},{\textit{VT}}^\natural )\) in Tables 11 and 12: namely, information about how conjugacy classes of \({\textit{HN}}\cong \mathrm {Inn}({\textit{VHN}}^\natural )\) and \({\mathbb {Z}}_3\times {\textit{Th}}\subset \mathrm {Inn}(\mathcal {W}_{D_{\mathrm {3C}}})\times \mathrm {Inn}({\textit{VT}}^\natural )\) fuse into conjugacy classes of \({\mathbb {M}}\). One can use this data to conduct checks on our proposals regarding the implementation of the symmetry groups in these two examples. For example, a prediction of Table 12 is that

$$\begin{aligned} J_{\mathrm {6F}}(\tau ) = \sum _\alpha \chi _{\omega ,\alpha }(\tau ) \chi _{\mathrm {2A},{\textit{VT}}^\natural (\alpha )}(\tau ) \end{aligned}$$
(B.3)

where \(\chi _{\omega ,\alpha }\) are the characters of \(\mathcal {W}_{D_{\mathrm {3C}}}\) twined by the generator of its \({\mathbb {Z}}_3\) automorphism, \(\chi _{\mathrm {2A},{\textit{VT}}^\natural (\alpha )}\) are the characters of \({\textit{VT}}^\natural \) twined by an element of the 2A conjugacy class of \({\textit{Th}}\), and \(J_{\mathrm {6F}}\) is the McKay-Thompson series of the 6A conjugacy class in \({\mathbb {M}}\) (c.f. Sect. 3.2.9 for more details). To compute \(\chi _{\mathrm {2A},{\textit{VT}}^\natural (\alpha )}\) to low order in its q-expansion, one can use the character table of \({\textit{Th}}\), Tables 7, 8, 9 and 10, as well as the decompositions of the graded-components \({\textit{VT}}^\natural (\alpha )_h\) into \({\textit{Th}}\) representations, Table 6.

Table 7 The character table of the Thompson group, part I. The notation follows that of the ATLAS [1] and the GAP software package [108] with \(b_N=(-1+ i\sqrt{N})/2\) for \(N \equiv -1 ~\mathrm{mod}~4\). \(A=1+4b_3\), \(B=2+8 b_3\), \(C=b_{15}\), \(D=-i\sqrt{3}\),\(E=i\sqrt{6}\), \(F= 1+3 b_3\), \(G=b_{31}\), \(H=2b_3\) and \(I=b_{39}\). An overline indicates complex conjugation
Table 8 The character table of the Thompson group, part II
Table 9 The character table of the Thompson group, part III
Table 10 The character table of the Thompson group, part IV
Table 11 The fusion of conjugacy classes in \({\textit{HN}}\) into conjugacy classes of \({\mathbb {M}}\). The notation nX indicates a conjugacy class of \({\textit{HN}}\), and mY indicates a conjugacy class of \({\mathbb {M}}\), with both following the labeling conventions of the Atlas of Finite Groups [1]. This data was computed using Gap [108]
Table 12 The fusion of conjugacy classes in \({\mathbb {Z}}_3\times {\textit{Th}}\) into conjugacy classes of \({\mathbb {M}}\). A conjugacy class in \({\mathbb {Z}}_3\times {\textit{Th}}\) is denoted as \((\omega ^k,n\mathrm {X})\) where \(\omega ^k\) for \(k=0,1,2\) are the three conjugacy classes of \({\mathbb {Z}}_3\), and nX is a conjugacy class of \({\textit{Th}}\), following the labeling in the Atlas of Finite Groups [1]. Monster conjugacy classes are labeled according to the Atlas as well. This table was computed using Gap [108], which provides two possibilities for the fusions of the classes \((\omega ^k,31\mathrm {AB})\); the ambiguity is of no consequence for the bilinears in equations (3.157) and (3.158), since \(J_{\mathrm {31A}} = J_{31B}\) and \(J_{\mathrm {93A}} = J_{\mathrm {93B}}\)

Alternative Derivation of the Characters of \( {{\textit{VF}}}^\natural _{22}\)

In this appendix, we give an alternative derivation of the characters of \({\textit{VF}}^\natural _{22}\). The basic idea is that, although the Hecke method does not work out of the box, one can perform intermediate deconstructions for which the Hecke method is effective. Although we work purely at the level of modular forms, our steps are motivated by the following algebraic manipulations.

  1. 1.

    We first decompose the moonshine module into (an extension of) one of its \({\mathcal {L}}(\tfrac{1}{2},0)\otimes {\mathcal {L}}(\tfrac{4}{5},0)\otimes {\mathcal {L}}(\tfrac{7}{10},0)\) subalgebrasFootnote 33 and its commutant. Here, the Hecke method is effective in producing the dual characters.

  2. 2.

    It is straightforward to infer from the previous step how the moonshine module decomposes into just \({\mathcal {L}}(\tfrac{1}{2},0)\otimes {\mathcal {L}}(\tfrac{4}{5},0)\) and its commutant. From the fact that \({\mathcal {P}}(2)\cong {\mathcal {L}}(\tfrac{1}{2},0)\) and \({\mathcal {P}}(3) \cong {\mathcal {L}}(\tfrac{4}{5},0)\oplus {\mathcal {L}}(\tfrac{4}{5},3)\), we will be able to re-interpret this as a decomposition of \(V^\natural \) into a \({\mathcal {P}}(2)\otimes {\mathcal {P}}(3)\) subalgebra and its commutant.

  3. 3.

    The previous step will give us a bilinear of the form \(J(\tau ) = \sum _i g_i(\tau ) {\widetilde{g}}_{i}(\tau )\) which we can set equal to the bilinear in equation (3.122) to extract expressions for the dual characters \(\chi _{{\textit{VF}}^\natural _{22}(\alpha )}(\tau )\).

We start by constructing the characters of an extension of \({\mathcal {P}}(2)\otimes {\mathcal {P}}(3)\otimes {\mathcal {P}}(6)\), using the block-diagonalization method outlined in Sect. 2.1.2. We label the S-matrices of the VOAs \({\mathcal {P}}(2)\), \({\mathcal {P}}(3)\), and \({\mathcal {P}}(6)\) as \(\mathcal {S}^{(2)}, \mathcal {S}^{(3)}\), and \(\mathcal {S}^{(6)}\). One can show that the matrix of the tensor product theory, \(\mathcal {S}^{(2)} \otimes \mathcal {S}^{(3)} \otimes \mathcal {S}^{(6)}\), can be block-diagonalized into a \(14 \times 14\) block and its complement. This suggests the existence of a unitary RCFT described by 14 characters which can be expressed in terms of parafermion characters as

$$\begin{aligned} \chi _{0}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,3} \psi ^{(6)}_{6,6} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,1} \psi ^{(6)}_{6,-2} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,-1}\psi ^{(6)}_{6,2} \nonumber \\&\quad +\psi ^{(2)}_{2,0}\psi ^{(3)}_{3,3}\psi ^{(6)}_{6,0} +\psi ^{(2)}_{2,0}\psi ^{(3)}_{3,-1}\psi ^{(6)}_{6,-4}+ \psi ^{(2)}_{2,0}\psi ^{(3)}_{3,1}\psi ^{(6)}_{6,4}, \nonumber \\ \chi _{1}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,3} \psi ^{(6)}_{2,0} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,1} \psi ^{(6)}_{4,-2} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{4,2} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,3} \psi ^{(6)}_{4,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{2,2} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,1} \psi ^{(6)}_{4,4} , \nonumber \\ \chi _{2}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,3} \psi ^{(6)}_{4,0} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,1} \psi ^{(6)}_{4,4} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{2,2} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,3} \psi ^{(6)}_{2,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{4,2} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,1} \psi ^{(6)}_{4,-2} , \nonumber \\ \chi _{3}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,3} \psi ^{(6)}_{6,0} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,1} \psi ^{(6)}_{6,4} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{6,-4} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,3} \psi ^{(6)}_{6,6} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{6,2} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{3,1} \psi ^{(6)}_{6,-2} , \nonumber \\ \chi _{4}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,0} \psi ^{(6)}_{4,0} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,2} \psi ^{(6)}_{2,2} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{1,1} \psi ^{(6)}_{4,4} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,0} \psi ^{(6)}_{2,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,2} \psi ^{(6)}_{4,2} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{1,1} \psi ^{(6)}_{4,-2} , \nonumber \\ \chi _{5}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,0} \psi ^{(6)}_{2,0} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,2} \psi ^{(6)}_{4,2} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{1,1} \psi ^{(6)}_{4,-2} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{1,1} \psi ^{(6)}_{4,4} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,0} \psi ^{(6)}_{4,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,2} \psi ^{(6)}_{2,2} , \nonumber \\ \chi _{6}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,0} \psi ^{(6)}_{6,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,0} \psi ^{(6)}_{6,6} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,2} \psi ^{(6)}_{6,-4} \nonumber \\&\quad + \psi ^{(2)}_{2,2} \psi ^{(3)}_{1,1} \psi ^{(6)}_{6,4} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{1,1} \psi ^{(6)}_{6,-2} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,2} \psi ^{(6)}_{6,2}, \nonumber \\ \chi _{7}&= \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,0} \psi ^{(6)}_{6,6} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{2,2} \psi ^{(6)}_{6,2} + \psi ^{(2)}_{2,2} \psi ^{(3)}_{1,1} \psi ^{(6)}_{6,-2} \nonumber \\&\quad + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,0} \psi ^{(6)}_{6,0} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{1,1} \psi ^{(6)}_{6,4} + \psi ^{(2)}_{2,0} \psi ^{(3)}_{2,2} \psi ^{(6)}_{6,-4} , \nonumber \\ \chi _{8}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,3} \psi ^{(6)}_{3,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,1} \psi ^{(6)}_{3,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{3,-1}, \nonumber \\ \chi _{9}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,3} \psi ^{(6)}_{3,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,1} \psi ^{(6)}_{3,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{3,-1}, \nonumber \\ \chi _{10}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,3} \psi ^{(6)}_{5,-3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,3} \psi ^{(6)}_{5,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,1} \psi ^{(6)}_{1,1} \nonumber \\&\quad + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{5,5} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,1} \psi ^{(6)}_{5,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{3,-1} \psi ^{(6)}_{5,-1} , \nonumber \\ \chi _{11}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,0} \psi ^{(6)}_{5,-3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,0} \psi ^{(6)}_{5,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{1,1} \psi ^{(6)}_{1,1} \nonumber \\&\quad + \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,2} \psi ^{(6)}_{5,5} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{1,1} \psi ^{(6)}_{5,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,2} \psi ^{(6)}_{5,-1} , \nonumber \\ \chi _{12}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,0} \psi ^{(6)}_{3,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{1,1} \psi ^{(6)}_{3,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,2} \psi ^{(6)}_{3,-1}, \nonumber \\ \chi _{13}&= \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,0} \psi ^{(6)}_{3,3} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{1,1} \psi ^{(6)}_{3,1} + \psi ^{(2)}_{1,1} \psi ^{(3)}_{2,2} \psi ^{(6)}_{3,-1}. \end{aligned}$$
(C.1)

The modular properties of the characters in (C.1) are governed by the S-matrix \(\mathcal {S}\)

$$\begin{aligned} \frac{1}{4} \left( \begin{array}{cccccccccccccc} \sqrt{2} s_1 \alpha &{} \frac{\alpha }{2 s_1} &{} \frac{\alpha }{2 s_1} &{} \sqrt{2} s_1 \alpha &{} \frac{\beta }{2 s_1} &{} \frac{\beta }{2 s_1} &{} \sqrt{2} s_1 \beta &{} \sqrt{2} s_1 \beta &{} \alpha &{} \alpha &{} \sqrt{2} \alpha &{} \sqrt{2} \beta &{} \beta &{} \beta \\ \frac{\alpha }{2s_1} &{} -\sqrt{2} s_1 \alpha &{} -\sqrt{2} s_1 \alpha &{} \frac{\alpha }{2s_1} &{} -\sqrt{2} s_1\beta &{} -\sqrt{2} s_1 \beta &{} \frac{\beta }{2s_1} &{} \frac{\beta }{2s_1} &{} -\alpha &{} -\alpha &{} \sqrt{2} \alpha &{} \sqrt{2} \beta &{} -\beta &{} -\beta \\ \frac{\alpha }{2s_1} &{} -\sqrt{2} s_1 \alpha &{} -\sqrt{2} s_1 \alpha &{} \frac{\alpha }{2 s_1} &{} -\sqrt{2} s_1 \beta &{} -\sqrt{2} s_1 \beta &{} \frac{\beta }{2s_1} &{} \frac{\beta }{2s_1} &{} \alpha &{} \alpha &{} -\sqrt{2} \alpha &{} -\sqrt{2} \beta &{} \beta &{} \beta \\ \sqrt{2} s_1 \alpha &{} \frac{\alpha }{2s_1} &{} \frac{\alpha }{2s_1} &{} \sqrt{2} s_1 \alpha &{} \frac{\beta }{2s_1} &{} \frac{\beta }{2s_1} &{} \sqrt{2} s_1 \beta &{} \sqrt{2} s_1 \beta &{} -\alpha &{} -\alpha &{} -\sqrt{2} \alpha &{} -\sqrt{2} \beta &{} -\beta &{} -\beta \\ \frac{\beta }{2s_1} &{} -\sqrt{2} s_1 \beta &{} -\sqrt{2} s_1 \beta &{} \frac{\beta }{2s_1} &{} \sqrt{2} s_1 \alpha &{} \sqrt{2} s_1 \alpha &{} -\frac{\alpha }{2s_1} &{} -\frac{\alpha }{2s_1} &{} \beta &{} \beta &{} -\sqrt{2}\beta &{} \sqrt{2} \alpha &{} -\alpha &{} -\alpha \\ \frac{\beta }{2s_1} &{} -\sqrt{2} s_1 \beta &{} -\sqrt{2} s_1 \beta &{} \frac{\beta }{2s_1} &{} \sqrt{2} s_1 \alpha &{} \sqrt{2} s_1 \alpha &{} -\frac{\alpha }{2s_1} &{} -\frac{\alpha }{2s_1} &{} -\beta &{} -\beta &{} \sqrt{2} \beta &{} -\sqrt{2} \alpha &{} \alpha &{} \alpha \\ \sqrt{2} s_1 \beta &{} \frac{\beta }{2 s_1} &{} \frac{\beta }{ 2s_1} &{} \sqrt{2} s_1 \beta &{} -\frac{\alpha }{2 s_1} &{} -\frac{\alpha }{2 s_1} &{} -\sqrt{2} s_1 \alpha &{} -\sqrt{2} s_1 \alpha &{} -\beta &{} -\beta &{} -\sqrt{2} \beta &{} \sqrt{2} \alpha &{} \alpha &{} \alpha \\ \sqrt{2} s_1 \beta &{} \frac{\beta }{2 s_1} &{} \frac{\beta }{2 s_1} &{} \sqrt{2} s_1 \beta &{} -\frac{\alpha }{2s_1} &{} -\frac{\alpha }{2s_1} &{} -\sqrt{2} s_1 \alpha &{} -\sqrt{2} s_1 \alpha &{} \beta &{} \beta &{} \sqrt{2} \beta &{} -\sqrt{2} \alpha &{} -\alpha &{} -\alpha \\ \alpha &{} -\alpha &{} \alpha &{} -\alpha &{} \beta &{} -\beta &{} -\beta &{} \beta &{} -\sqrt{2} \alpha &{}\sqrt{2} \alpha &{} 0 &{} 0 &{} \sqrt{2} \beta &{} -\sqrt{2} \beta \\ \alpha &{} -\alpha &{} \alpha &{} -\alpha &{} \beta &{} -\beta &{} -\beta &{} \beta &{} \sqrt{2} \alpha &{} -\sqrt{2} \alpha &{} 0 &{} 0 &{} -\sqrt{2} \beta &{} \sqrt{2} \beta \\ \sqrt{2} \alpha &{} \sqrt{2} \alpha &{} -\sqrt{2} \alpha &{} -\sqrt{2} \alpha &{} -\sqrt{2} \beta &{} \sqrt{2} \beta &{} -\sqrt{2} \beta &{} \sqrt{2} \beta &{} 0 &{} 0 &{} 0 &{} 0&{} 0 &{} 0 \\ \sqrt{2} \beta &{} \sqrt{2} \beta &{} - \sqrt{2} \beta &{} -\sqrt{2} \beta &{} \sqrt{2} \alpha &{} -\sqrt{2} \alpha &{} \sqrt{2} \alpha &{} -\sqrt{2} \alpha &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ \beta &{} -\beta &{} \beta &{} -\beta &{} -\alpha &{} \alpha &{} \alpha &{} -\alpha &{} \sqrt{2} \beta &{} -\sqrt{2} \beta &{} 0 &{} 0 &{} \sqrt{2} \alpha &{} -\sqrt{2} \alpha \\ \beta &{} -\beta &{} \beta &{} -\beta &{} -\alpha &{} \alpha &{} \alpha &{} -\alpha &{} -\sqrt{2} \beta &{} \sqrt{2} \beta &{} 0 &{} 0 &{} -\sqrt{2} \alpha &{} \sqrt{2} \alpha \end{array}\right) \end{aligned}$$

where \(\alpha = \sqrt{1-\frac{1}{\sqrt{5}}}, \ \beta = \sqrt{1+\frac{1}{\sqrt{5}}}\), and \(s_1 = \text {sin}\left( \frac{\pi }{8}\right) \). The T-matrix \(\mathcal {T}\) reads

$$\begin{aligned} \begin{aligned} \text {diag} \Big ( e^{-\frac{17 i \pi }{80}}, e^{\frac{23 i \pi }{80}}, e^{-\frac{57 i \pi }{80}}, e^{\frac{63 i \pi }{80}}, e^{\frac{7 i \pi }{80}}, e^{-\frac{73 i \pi }{80} }, e^{-\frac{33 i \pi }{80}}, e^{\frac{47 i \pi }{80}}, e^{\frac{i \pi }{10}}, e^{\frac{i \pi }{10}}, e^{-\frac{13 i \pi }{20}}, e^{\frac{3 i \pi }{20}}, e^{\frac{9 i \pi }{10}}, e^{\frac{9 i \pi }{10}} \Big ). \end{aligned} \end{aligned}$$

One can check that these matrices furnish a representation of \({\textit{PSL}}_2({\mathbb {Z}})\), namely \(\mathcal {S}^2 = 1\) and \((\mathcal {S} \cdot \mathcal {T})^3 = 1\).

Our goal is to find the characters dual to those in equation (C.1). The solution we present, although inspired by the idea of performing a series of intermediate deconstructions, unfortunately features steps which do not quite have consistent VOA interpretations. The contents of the remainder of this appendix should therefore be thought of strictly as manipulations at the level of modular forms which produce the right answer for the characters \(\chi _{{\textit{VF}}_{22}^\natural }(\tau )\), although we do believe it should be possible to improve upon our results.

Step 1 We start off by constructing the fictitious charactersFootnote 34 of an extension \(\mathcal {U}\) of \({\mathcal {L}}(\tfrac{1}{2},0)\otimes {\mathcal {L}}(\tfrac{4}{5},0)\otimes {\mathcal {L}}(\tfrac{7}{10},0)\). This extension has 16 states of conformal weight

$$\begin{aligned} h = \left( 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{7}{6}, \frac{2}{3}, \frac{2}{3}, \frac{2}{5}, \frac{1}{15}, \frac{1}{10}, \frac{23}{30}, \frac{3}{5}, \frac{19}{15}, \frac{9}{10}, \frac{17}{30} \right) , \end{aligned}$$
(C.2)

whose characters \(f_j\) with conductor \(N=60\) can be written in terms of minimal model characters as

$$\begin{aligned} f_{0}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{1,+} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{1,+}, \quad f_{1} = \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{2,+} + \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{2,+}, \nonumber \\ f_{2}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{2,+} +\chi ^{(3)}_{2,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{2,+} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,2} \chi ^{(5)}_{2,+}, \nonumber \\ f_{3}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,4} \chi ^{(5)}_{1,+} +\chi ^{(3)}_{2,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{1,+} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,1} \chi ^{(5)}_{1,+}, \nonumber \\ f_{4}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{2,3} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{2,3} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,2} \chi ^{(5)}_{2,3} , \nonumber \\ f_{5}&=\chi ^{(3)}_{2,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{1,3} + \chi ^{(3)}_{1,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{1,3} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,1} \chi ^{(5)}_{1,3} , \nonumber \\ f_{6}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{1,3} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{1,3}, \quad f_{7} = \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{2,3} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{2,3}, \nonumber \\ f_{8}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{2,+} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{2,+}, \quad f_{9} = \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{2,3} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{2,3}, \nonumber \\ f_{10}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{1,+} +\chi ^{(3)}_{2,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{1,+} +2\chi ^{(3)}_{1,2} \chi ^{(4)}_{2,2} \chi ^{(5)}_{1,+} , \nonumber \\ f_{11}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{1,3}+\chi ^{(3)}_{2,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{1,3} +2\chi ^{(3)}_{1,2} \chi ^{(4)}_{2,2} \chi ^{(5)}_{1,3}, \nonumber \\ f_{12}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{1,+}+ \chi ^{(3)}_{2,1} \chi ^{(4)}_{(1,2)} \chi ^{(5)}_{1,+}, \quad f_{13} = \chi ^{(3)}_{1,1} \chi ^{(4)}_{1,3} \chi ^{(5)}_{1,3}+ \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,2} \chi ^{(5)}_{1,3}, \nonumber \\ f_{14}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{2,+} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{2,+} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,1} \chi ^{(5)}_{2,+} , \nonumber \\ f_{15}&= \chi ^{(3)}_{1,1} \chi ^{(4)}_{3,1} \chi ^{(5)}_{2,3} + \chi ^{(3)}_{2,1} \chi ^{(4)}_{1,1} \chi ^{(5)}_{2,3} + 2 \chi ^{(3)}_{1,2} \chi ^{(4)}_{2,1} \chi ^{(5)}_{2,3}, \end{aligned}$$
(C.3)

where \(\chi ^{(5)}_{1,+} \equiv \chi _{1,1}^{(5)} + \chi _{1,5}^{(5)}\) and \(\chi ^{(5)}_{2,+} \equiv \chi _{2,1}^{(5)} + \chi _{2,5}^{(5)}\).

The central charge of \({\mathcal {L}}(\tfrac{1}{2},0)\otimes {\mathcal {L}}(\tfrac{7}{10},0)\otimes {\mathcal {L}}(\tfrac{4}{5},0)\) is 2, and its commutant in \(V^\natural \) has central charge \(22=2\cdot 11\), so we have a chance at finding the dual characters as the Hecke image of f under \({\mathsf {T}}_{11}\). We provide the q-expansions of the components of \({{\mathsf {T}}}_{11}f\) below,

$$\begin{aligned} {\widetilde{f}}_0(\tau )&\equiv {{\mathsf {T}}}_{11} f_{0}(\tau ) = q^{-\frac{11}{12}}(1+ 13959 q^2 + 1083742 q^3+ 34869263 q^4 + \cdots ), \nonumber \\ {\widetilde{f}}_1(\tau )&\equiv {{\mathsf {T}}}_{11} f_{1}(\tau ) = q^{\frac{1}{12}}(22 + 36212 q + 2838132 q^2 + 91279606 q^3 + \cdots ), \nonumber \\ {\widetilde{f}}_2(\tau )&\equiv {{\mathsf {T}}}_{11} f_{2}(\tau ) = q^{\frac{7}{12}}(6072 + 1124640 q + 52185936 q^2 + 1273841712 q^3 + \cdots ), \nonumber \\ {\widetilde{f}}_3(\tau )&\equiv {{\mathsf {T}}}_{11} f_{3}(\tau ) = q^{\frac{7}{12}}(2376 + 429792 q + 19934640 q^2 + 486569424 q^3 + \cdots ), \nonumber \\ {\widetilde{f}}_4(\tau )&\equiv {{\mathsf {T}}}_{11} f_{4}(\tau ) = q^{\frac{11}{12}}(45048 + 4456584 q + 159935952 q^2 + \cdots ), \nonumber \\ {\widetilde{f}}_5(\tau )&\equiv {{\mathsf {T}}}_{11} f_{5}(\tau ) = q^{\frac{11}{12}}(17160 + 1702008 q + 61089072 q^2 + \cdots ), \nonumber \\ {\widetilde{f}}_6(\tau )&\equiv {{\mathsf {T}}}_{11} f_{6}(\tau ) = q^{\frac{5}{12}}(253 + 68321 q+ 3703205 q^2 + 98302325 q^3 + \cdots ), \nonumber \\ {\widetilde{f}}_7(\tau )&\equiv {{\mathsf {T}}}_{11} f_{7}(\tau ) = q^{\frac{5}{12}}(638 + 179377 q+ 9692980 q^2 + 257372401 q^3 + \cdots ), \nonumber \\ {\widetilde{f}}_{8}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{12}(\tau ) = q^{\frac{41}{60}}(2387 + 355014 q + 15143865 q^2 + \cdots )\nonumber \\ {\widetilde{f}}_{9}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{13}(\tau ) = q^{\frac{61}{60}}(15884 + 1357477 q + 45571669 q^2 + \cdots ) \nonumber \\ {\widetilde{f}}_{10}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{14}(\tau ) = q^{\frac{59}{60}}(39864 + 3578784 q + 122770296 q^2 + \cdots )\nonumber \\ {\widetilde{f}}_{11}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{15}(\tau ) = q^{\frac{19}{60}}(528 + 209880 q + 12540264 q^2 + 351454488 q^3 + \cdots ) \nonumber \\ {\widetilde{f}}_{12}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{8}(\tau ) = q^{\frac{29}{60}}(638 + 149402 q + 7586128 q^2 + 194589330 q^3 + \cdots )\nonumber \\ {\widetilde{f}}_{13}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{9}(\tau ) = q^{-\frac{11}{60}}(1 + 5258 q + 615197 q^2 + 23698356 q^3 + \cdots ) \nonumber \\ {\widetilde{f}}_{14}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{10}(\tau ) = q^{\frac{11}{60}}(168 + 110880 q + 7675800 q^2 + 232188528 q^3 + \cdots ) \nonumber \\ {\widetilde{f}}_{15}(\tau )&\equiv {{\mathsf {T}}}_{11} f_{11}(\tau ) = q^{\frac{31}{60}}(2376 + 519816 q + 25579224 q^2 + 645255336 q^3 + \cdots ) . \end{aligned}$$
(C.4)

One can check that the Hecke images (C.4) satisfy the following bilinear,

$$\begin{aligned} \begin{aligned} J(\tau )&= \sum _{i=0}^{15} \alpha _{i} f_i(\tau ) {\widetilde{f}}_{i}(\tau ). \end{aligned} \end{aligned}$$
(C.5)

where the \(\alpha _{i}\) take the values

$$\begin{aligned} \begin{aligned} \alpha _{i}&= 1, 1, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 2, 2, 1, 2, \frac{1}{3}, \frac{2}{3}, 1, 2, \frac{1}{3}, \frac{2}{3}, \end{aligned} \end{aligned}$$
(C.6)

for \(i=0,1, \dots , 15\).

Step 2 Next, let us construct the fictitious charactersFootnote 35 of a particular extension of \({\mathcal {L}}(\tfrac{1}{2},0)\otimes {\mathcal {L}}(\tfrac{4}{5},0)\); its irreducible modules have highest weights

$$\begin{aligned} h = \left( 0, \frac{1}{16}, \frac{1}{2}, \frac{2}{3}, \frac{35}{48}, \frac{7}{6}, \frac{2}{5}, \frac{37}{80}, \frac{9}{10}, \frac{1}{15}, \frac{31}{240}, \frac{17}{30} \right) , \end{aligned}$$
(C.7)

and its characters can be written as

$$\begin{aligned} \begin{aligned} g_{0}(\tau )&= \chi _{1,1}^{(3)}(\tau ) \chi _{1,+}^{(5)}(\tau ), \quad g_{1}(\tau ) = \chi _{1,2}^{(3)}(\tau ) \chi _{1,+}^{(5)}(\tau ), \quad g_{2}(\tau ) = \chi _{1,3}^{(3)}(\tau ) \chi _{1,+}^{(5)}(\tau ), \\ g_{3}(\tau )&= \chi _{1,1}^{(3)}(\tau ) \chi _{1,3}^{(5)}(\tau ), \quad g_{4}(\tau ) = \chi _{1,2}^{(3)}(\tau ) \chi _{1,3}^{(5)}(\tau ), \quad g_{5}(\tau ) = \chi _{1,3}^{(3)}(\tau ) \chi _{1,3}^{(5)}(\tau ), \\ g_{6}(\tau )&= \chi _{1,1}^{(3)}(\tau ) \chi _{2,+}^{(5)}(\tau ), \quad g_{7}(\tau ) = \chi _{1,2}^{(3)}(\tau ) \chi _{2,+}^{(5)}(\tau ), \quad g_{8}(\tau ) = \chi _{1,3}^{(3)}(\tau ) \chi _{2,+}^{(5)}(\tau ), \\ g_{9}(\tau )&= \chi _{1,1}^{(3)}(\tau ) \chi _{2,3}^{(5)}(\tau ), \quad g_{10}(\tau ) = \chi _{1,2}^{(3)}(\tau ) \chi _{2,3}^{(5)}(\tau ), \quad g_{11}(\tau ) = \chi _{1,3}^{(3)}(\tau ) \chi _{2,3}^{(5)}(\tau ). \end{aligned} \end{aligned}$$
(C.8)

We would like to find the dual characters, which by assumption should satisfy a bilinear of the form

$$\begin{aligned} \begin{aligned} J(\tau )&= \sum _{i} g_i(\tau ) {\widetilde{g}}_{i}(\tau ). \end{aligned} \end{aligned}$$
(C.9)

By comparing (C.5) and (C.9), one can express \({\widetilde{g}}_{i}(\tau )\) in terms of (C.4) and the characters of \({\mathcal {L}}(\tfrac{7}{10},0)\). We find

$$\begin{aligned} \begin{aligned} {\widetilde{g}}_{0}(\tau )&= \frac{1}{3} \chi _{1,4}^{(4)} {\widetilde{f}}_3(\tau ) + \frac{1}{3} \chi _{1,2}^{(4)} {\widetilde{f}}_{10}(\tau ) + \chi _{1,1}^{(4)} {\widetilde{f}}_0(\tau ) + \chi _{1,3}^{(4)} {\widetilde{f}}_{12}(\tau ), \\ {\widetilde{g}}_{1}(\tau )&= \frac{2}{3} \chi _{2,1}^{(4)} {\widetilde{f}}_{3}(\tau ) + \frac{2}{3} \chi _{2,2}^{(4)} {\widetilde{f}}_{10}(\tau ), \quad {\widetilde{g}}_{4}(\tau ) = \frac{4}{3} \chi _{2,1}^{(4)} {\widetilde{f}}_{5}(\tau ) + \frac{4}{3} \chi _{2,2}^{(4)} {\widetilde{f}}_{11}(\tau ), \\ {\widetilde{g}}_{2}(\tau )&= \frac{1}{3} \chi _{1,1}^{(4)} {\widetilde{f}}_{3}(\tau ) + \frac{1}{3} \chi _{1,3}^{(4)} {\widetilde{f}}_{10}(\tau ) + \chi _{3,1}^{(4)} {\widetilde{f}}_{0}(\tau ) + \chi _{1,2}^{(4)} {\widetilde{f}}_{12}(\tau ), \\ {\widetilde{g}}_{3}(\tau )&= \frac{1}{3} \chi _{3,1}^{(4)} {\widetilde{f}}_{5}(\tau ) + \frac{2}{3} \chi _{1,2}^{(4)} {\widetilde{f}}_{11}(\tau ) + 2 \chi _{1,1}^{(4)} {\widetilde{f}}_{6}(\tau ) + 2 \chi _{1,3}^{(4)} {\widetilde{f}}_{13}(\tau ), \\ {\widetilde{g}}_{5}(\tau )&= \frac{2}{3} \chi _{1,1}^{(4)} {\widetilde{f}}_{5}(\tau ) + \frac{2}{3} \chi _{1,3}^{(4)} {\widetilde{f}}_{11}(\tau ) + 2\chi _{3,1}^{(4)} {\widetilde{f}}_{6}(\tau ) + 2 \chi _{1,2}^{(4)} {\widetilde{f}}_{13}(\tau ), \\ {\widetilde{g}}_{6}(\tau )&= \frac{1}{3} \chi _{1,2}^{(4)} {\widetilde{f}}_{2}(\tau ) + \frac{1}{3} \chi _{3,1}^{(4)} {\widetilde{f}}_{14}(\tau ) + \chi _{1,3}^{(4)} {\widetilde{f}}_1(\tau ) + \chi _{1,1}^{(4)} {\widetilde{f}}_{8}(\tau ), \\ {\widetilde{g}}_{7}(\tau )&= \frac{2}{3} \chi _{2,2}^{(4)} {\widetilde{f}}_{2}(\tau ) + \frac{2}{3} \chi _{2,1}^{(4)} {\widetilde{f}}_{14}(\tau ), \quad {\widetilde{g}}_{10}(\tau ) = \frac{4}{3} \chi _{2,2}^{(4)} {\widetilde{f}}_{4}(\tau ) + \frac{4}{3} \chi _{2,1}^{(4)} {\widetilde{f}}_{15}(\tau ), \\ {\widetilde{g}}_{8}(\tau )&= \frac{1}{3} \chi _{1,3}^{(4)} {\widetilde{f}}_{2}(\tau ) + \frac{1}{3} \chi _{1,1}^{(4)} {\widetilde{f}}_{14}(\tau ) + \chi _{1,2}^{(4)} {\widetilde{f}}_1(\tau ) + \chi _{3,1}^{(4)} {\widetilde{f}}_{8}(\tau ), \\ {\widetilde{g}}_{9}(\tau )&= \frac{2}{3} \chi _{1,2}^{(4)} {\widetilde{f}}_{4}(\tau ) + \frac{2}{3} \chi _{3,1}^{(4)} {\widetilde{f}}_{15}(\tau ) + 2 \chi _{1,3}^{(4)} {\widetilde{f}}_{7}(\tau ) + 2 \chi _{1,1}^{(4)} {\widetilde{f}}_{9}(\tau ), \\ {\widetilde{g}}_{11}(\tau )&= \frac{2}{3} \chi _{1,3}^{(4)} {\widetilde{f}}_{4}(\tau ) + \frac{2}{3} \chi _{1,1}^{(4)} {\widetilde{f}}_{15}(\tau ) + 2 \chi _{1,2}^{(4)} {\widetilde{f}}_{7}(\tau ) + 2 \chi _{3,1}^{(4)} {\widetilde{f}}_9(\tau ). \end{aligned} \end{aligned}$$
(C.10)

Step 3 Note that the parafermion theories \({\mathcal {P}}(2)\) and \({\mathcal {P}}(3)\) are the same as \({\mathcal {L}}(\tfrac{1}{2},0)\) and \({\mathcal {L}}(\tfrac{4}{5},0)\oplus {\mathcal {L}}(\tfrac{4}{5},3)\), respectively. Thus, we can replace the characters of the \({\mathbb {Z}}_2\) parafermion theory \(\psi ^{(2)}_{\ell ,m}\) with the characters \(\chi ^{(3)}_{r,s}\) in equation (C.1). The relation between Ising and \({\mathcal {P}}(2)\) characters is

$$\begin{aligned} \psi ^{(2)}_{2,2} = \chi ^{(3)}_{1,1}, \quad \psi ^{(2)}_{2,0} = \chi ^{(3)}_{2,1}, \quad \psi ^{(2)}_{1,1} = \chi ^{(3)}_{2,2}. \end{aligned}$$
(C.11)

Similarly, we can substitute \(\chi ^{(5)}_{r,s}\) for the characters of the \({\mathbb {Z}}_3\) parafermion theory \(\psi ^{(3)}_{\ell ,m}\) as

$$\begin{aligned} \begin{aligned} \psi ^{(3)}_{3,3}&= \chi ^{(5)}_{1,1} + \chi ^{(5)}_{1,5}, \quad \psi ^{(3)}_{1,1} + \psi ^{(3)}_{2,2} = 2\chi ^{(5)}_{2,3}, \\ \psi ^{(3)}_{2,0}&= \chi ^{(5)}_{2,1} + \chi ^{(5)}_{2,5}, \quad \psi ^{(3)}_{3,1} + \psi ^{(3)}_{3,-1} = 2\chi ^{(5)}_{1,3}. \end{aligned} \end{aligned}$$
(C.12)

The next step is to find the relations among the characters \({\widetilde{g}}_{i}(\tau )\) and \(\chi _{{\textit{VF}}^\natural _{22}(\alpha )}\) by comparing equations (C.9) and (3.122). Setting them to be equal, we get a relation of the form

$$\begin{aligned} {\widetilde{g}}_{0}&= \psi ^{(6)}_{2,0} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{4,0} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{6,0} {{\widetilde{\chi }}}_{3} + \psi ^{(6)}_{6,6} {{\widetilde{\chi }}}_{0}, \nonumber \\ {\widetilde{g}}_{1}&= \psi ^{(6)}_{3,3} {\widetilde{\chi }}_{8} + \psi ^{(6)}_{3,3} {\widetilde{\chi }}_{9}+ \psi ^{(6)}_{5,-3} {\widetilde{\chi }}_{10} +\psi ^{(6)}_{5,3} {\widetilde{\chi }}_{10}, \nonumber \\ {\widetilde{g}}_{2}&= \psi ^{(6)}_{2,0} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{4,0} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{6,0} {\widetilde{\chi }}_{0} + \psi ^{(6)}_{6,6} {\widetilde{\chi }}_{3}, \nonumber \\ {\widetilde{g}}_{3}&= \psi ^{(6)}_{2,2} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{4,-2} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{4,2} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{4,4} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{6,-4} {\widetilde{\chi }}_{3} + \psi ^{(6)}_{6,-2} {\widetilde{\chi }}_{0} + \psi ^{(6)}_{6,2} {\widetilde{\chi }}_{0} + \psi ^{(6)}_{6,4} {\widetilde{\chi }}_{3}, \nonumber \\ {\widetilde{g}}_{4}&= \psi ^{(6)}_{1,1} {\widetilde{\chi }}_{10} + \psi ^{(6)}_{3,-1} {\widetilde{\chi }}_{8} + \psi ^{(6)}_{3,-1} {\widetilde{\chi }}_{9} + \psi ^{(6)}_{3,1} {\widetilde{\chi }}_{8} + \psi ^{(6)}_{3,1} {\widetilde{\chi }}_{9} + \psi ^{(6)}_{5,-1} {\widetilde{\chi }}_{10} + \psi ^{(6)}_{5,1} {\widetilde{\chi }}_{10} + \psi ^{(6)}_{5,5} {\widetilde{\chi }}_{10}, \nonumber \\ {\widetilde{g}}_{5}&= \psi ^{(6)}_{2,2} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{4,-2} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{4,2} {\widetilde{\chi }}_{2} + \psi ^{(6)}_{4,4} {\widetilde{\chi }}_{1} + \psi ^{(6)}_{6,-4} {\widetilde{\chi }}_{0} + \psi ^{(6)}_{6,-2} {\widetilde{\chi }}_{3} + \psi ^{(6)}_{6,2} {\widetilde{\chi }}_{3} + \psi ^{(6)}_{6,4} {\widetilde{\chi }}_{0} , \nonumber \\ {\widetilde{g}}_{6}&= \psi ^{(6)}_{2,0} {\widetilde{\chi }}_{5} + \psi ^{(6)}_{4,0} {\widetilde{\chi }}_{4} + \psi ^{(6)}_{6,0} {\widetilde{\chi }}_{6} + \psi ^{(6)}_{6,6} {\widetilde{\chi }}_{7}, \nonumber \\ {\widetilde{g}}_{7}&= \psi ^{(6)}_{3,3} {\widetilde{\chi }}_{12} + \psi ^{(6)}_{3,3} {\widetilde{\chi }}_{13} + \psi ^{(6)}_{5,-3} {\widetilde{\chi }}_{11} + \psi ^{(6)}_{5,3} {\widetilde{\chi }}_{11}, \nonumber \\ {\widetilde{g}}_{8}&= \psi ^{(6)}_{2,0} {\widetilde{\chi }}_{4} + \psi ^{(6)}_{4,0} {\widetilde{\chi }}_{5} + \psi ^{(6)}_{6,0} {\widetilde{\chi }}_{7} + \psi ^{(6)}_{6,6} {\widetilde{\chi }}_{6}, \nonumber \\ {\widetilde{g}}_{9}&= \psi ^{(6)}_{2,2}{\widetilde{\chi }}_{4} + \psi ^{(6)}_{4,-2} {\widetilde{\chi }}_{5}+ \psi ^{(6)}_{4,2} {\widetilde{\chi }}_{5} + \psi ^{(6)}_{4,4} {\widetilde{\chi }}_{4} + \psi ^{(6)}_{6,-4}{\widetilde{\chi }}_{6} + \psi ^{(6)}_{6,-2} {\widetilde{\chi }}_{7}+ \psi ^{(6)}_{6,2} {\widetilde{\chi }}_{7} + \psi ^{(6)}_{6,4} {\widetilde{\chi }}_{6} , \nonumber \\ {\widetilde{g}}_{10}&= \psi ^{(6)}_{1,1}{\widetilde{\chi }}_{11} + \psi ^{(6)}_{3,-1} {\widetilde{\chi }}_{12}+ \psi ^{(6)}_{3,-1} {\widetilde{\chi }}_{13} + \psi ^{(6)}_{3,1} {\widetilde{\chi }}_{12} + \psi ^{(6)}_{3,1}{\widetilde{\chi }}_{13} + \psi ^{(6)}_{5,-1} {\widetilde{\chi }}_{11}+ \psi ^{(6)}_{5,1} {\widetilde{\chi }}_{11} + \psi ^{(6)}_{5,5} {\widetilde{\chi }}_{11} , \nonumber \\ {\widetilde{g}}_{11}&= \psi ^{(6)}_{2,2}{\widetilde{\chi }}_{5} + \psi ^{(6)}_{4,-2} {\widetilde{\chi }}_{4}+ \psi ^{(6)}_{4,2} {\widetilde{\chi }}_{4} + \psi ^{(6)}_{4,4} {\widetilde{\chi }}_{5} + \psi ^{(6)}_{6,-4}{\widetilde{\chi }}_{7} + \psi ^{(6)}_{6,-2} {\widetilde{\chi }}_{6}+ \psi ^{(6)}_{6,2} {\widetilde{\chi }}_{6} + \psi ^{(6)}_{6,4} {\widetilde{\chi }}_{7}. \end{aligned}$$
(C.13)

Here, \({\widetilde{\chi }}_{\alpha }(\tau )\) is short notation for \(\chi _{{\textit{VF}}^\natural _{22}(\alpha )}(\tau )\). Using the expressions for the \({\widetilde{g}}_{i}(\tau )\) in equation (C.10), one can find the q-expansions of \(\chi _{{\textit{VF}}^\natural _{22}(\alpha )}(\tau )\). Here, we assumed \({\widetilde{\chi }}_{8}(\tau )={\widetilde{\chi }}_{9}(\tau )\) and \({\widetilde{\chi }}_{12}(\tau )={\widetilde{\chi }}_{13}(\tau )\), because \({\chi }_{8}(\tau )={\chi }_{9}(\tau )\) and \({\chi }_{12}(\tau )={\chi }_{13}(\tau )\). With these extra conditions, (C.13) recovers the q-expansions (3.123).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, JB., Harvey, J.A., Lee, K. et al. Conformal Field Theories with Sporadic Group Symmetry. Commun. Math. Phys. 388, 1–105 (2021). https://doi.org/10.1007/s00220-021-04207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04207-7

Navigation