Skip to main content
Log in

Gauge Theory on Noncommutative Riemannian Principal Bundles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new, general approach to gauge theory on principal G-spectral triples, where G is a compact connected Lie group. We introduce a notion of vertical Riemannian geometry for G-\(C^*\)-algebras and prove that the resulting noncommutative orbitwise family of Kostant’s cubic Dirac operators defines a natural unbounded \(KK^G\)-cycle in the case of a principal G-action. Then, we introduce a notion of principal G-spectral triple and prove, in particular, that any such spectral triple admits a canonical factorisation in unbounded \(KK^G\)-theory with respect to such a cycle: up to a remainder, the total geometry is the twisting of the basic geometry by a noncommutative superconnection encoding the vertical geometry and underlying principal connection. Using these notions, we formulate an approach to gauge theory that explicitly generalises the classical case up to a groupoid cocycle and is compatible in general with this factorisation; in the unital case, it correctly yields a real affine space of noncommutative principal connections with affine gauge action. Our definitions cover all locally compact classical principal G-bundles and are compatible with \(\theta \)-deformation; in particular, they cover the \(\theta \)-deformed quaternionic Hopf fibration \(C^\infty (S^7_\theta ) \hookleftarrow C^\infty (S^4_\theta )\) as a noncommutative principal \({{\,\mathrm{SU}\,}}(2)\)-bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, B., Exel, R.: Deformation quantization via Fell bundles. Math. Scand. 89, no. 1, 135–160 (2001). Available at arXiv:funct-an/9706005

  2. Alekseev, A., Meinrenken, E.: The non-commutative Weil algebra. Invent. Math. 139(1), 135–172 (2000). Available at arXiv:math/9903052

  3. Alvarez Lopez, J.A., Kordyukov, Yu.A., Leichtnam, E.: Riemannian foliations of bounded geometry. Math. Nachr. 287(14–15), 1589–1608 (2014). Available at arXiv:1308.0637

  4. Ammann, B., Bar, C.: The Dirac operator on nilmanifolds and collapsing circle bundles. Ann. Global Anal. Geom. 16(3), 221–253 (1998)

  5. Applebaum, D.: Probability on Compact Lie groups, Probability Theory and Stochastic Modelling, vol. 70. Springer, Cham (2014)

    MATH  Google Scholar 

  6. Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions. J. Noncommut. Geom. 10(1), 29–64 (2016). Available at arXiv:1409.5335

  7. Atiyah, M.F., Drinfel’d, V.G., Hitchin, N.J., Manin, Y.I.: Construction of instantons. Phys. Lett. A 65 (3), 185–187 (1978)

  8. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181.207 (1957)

    Article  MathSciNet  Google Scholar 

  9. Atiyah, M.F.: Geometry on Yang–Mills fields. Scuola Normale Superiore Pisa, Pisa (1979)

    MATH  Google Scholar 

  10. Atiyah, M., Hirzebruch, F.: Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), p. 18.28. Springer, New York (1970)

  11. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^\ast \)-modules hilbertiens. C. R. Acad. Sci. Paris Ser. I Math. 296(21), 875–878 (1983)

  12. Baum, P.F., De Commer, K., Hajac, P.M.: Free actions of compact quantum groups on unital C\(^*\)-algebras, Doc. Math. 22, 825–849 (2017). Available at arXiv:1304.2812

  13. Bellissard, J.V., Marcolli, M., Reihani, K.: Dynamical systems on spectral metric spaces (2010). Available at arXiv:1007.4617

  14. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators, Grundlehren Text Editions. Springer, Berlin (2004)

  15. Bismut, J.-M.: The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83(1), 91–151 (1986)

  16. Blackadar, B.: K-theory for Operator Algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge (1998)

  17. Blecher, D.P., Le Merdy, C.: Operator Algebras and their Modules, an Operator Space Approach, London Mathematical Society Monographs, New Series, vol. 30. Oxford University Press, Oxford (2004)

  18. Blecher, D.P.: A new approach to Hilbert C\(^\ast \)-modules. Math. Ann. 307(2), 253–290 (1997)

  19. Boeijink, J., van den Dungen, K.: On globally non-trivial almost-commutative manifolds. J. Math. Phys. 55(10), 103508 (2014), 33. Available at arXiv:1405.5368

  20. Brain, S., Mesland, B., van Suijlekom, W.D.: Gauge theory for spectral triples and the unbounded Kasparov product. J. Noncommut. Geom. 10(1), 135–206 (2016). Available at arXiv:1306.1951

  21. Bruning, J., Kamber, F.W.: On the spectrum and index of transversal Dirac operators associated to Riemannian foliations. Preprint

  22. Brzeziński, T., Gaunt, J., Schenkel, A.: On the relationship between classical and deformed Hopf fibrations, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 008, 29, available at arXiv:1811.10913

  23. Brzeziński, T., Hajac, P.M.: The Chern–Galois character. C. R. Math. Acad. Sci. Paris 338(2), 113–116 (2004). Available at arXiv:math/0306436

  24. Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157(3), 591–638 (1993). Available at arXiv:hep-th/9208007

  25. Ćaćić, B.: A reconstruction theorem for almost-commutative spectral triples. Lett. Math. Phys. 100(2), 181–202 (2012). Available at arXiv:1101.5908

  26. Ćaćić, B.: A reconstruction theorem for Connes–Landi deformations of commutative spectral triples. J. Geom. Phys. 98, 82–109 (2015). Available at arXiv:1408.4429

  27. Čadek, M., Vanžura, J.: On Sp(2) and Sp(2) \(\cdot \) Sp(1)-structures in 8-dimensional vector bundles. Publ. Mat. 41(2), 383–401 (1997)

    Article  MathSciNet  Google Scholar 

  28. Carey, A.L., Neshveyev, S., Nest, R., Rennie, A.: Twisted cyclic theory, equivariant KK-theory and KMS states. J. Reine Angew. Math. 650, 161–191 (2011). Available at arXiv:0808.3029

  29. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997). Available at arXiv:hep-th/9606001

  30. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  Google Scholar 

  31. Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations, Commun. Math. Phys. 221(1), 141–159 (2001). Available at arXiv:math/0011194

  32. Connes, A.: A survey of foliations and operator algebras, Operator algebras and applications, Part I (Kingston, Ont., 1980). In: Proceedings of Sympososium Pure Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1982, pp. 521–628

  33. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996). Available at arXiv:hep-th/9603053

  34. Connes, A.: Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, : Lecture Notes in Math., vol. 725. Springer, Berlin 1979, 19–143 (1978)

  35. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)

    MATH  Google Scholar 

  36. Connes, A.: Geometry from the spectral point of view. Lett. Math. Phys. 34(3), 203–238 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  37. Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20(6), 1139–1183 (1984)

    Article  MathSciNet  Google Scholar 

  38. Dąbrowski, L., Sitarz, A., Zucca, A.: Dirac operators on noncommutative principal circle bundles. Int. J. Geom. Methods Mod. Phys. 11(1), 1450012, 29 (2014). Available at arXiv:1305.6185

  39. Dąbrowski, L., Sitarz, A.: An asymmetric noncommutative torus, SIGMA Symmetry Integrability Geom. Methods Appl. 11, Paper 075, 11 (2015). Available at arXiv:1406.4645

  40. Dąbrowski, L., Sitarz, A.: Curved noncommutative torus and Gauss–Bonnet. J. Math. Phys. 54(1), 013518, 11 (2013). Available at arXiv:1204.0420

  41. Dąbrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere, Noncommutative Geometry and Quantum Groups (Warsaw, 2001), Banach Center Publ., vol. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 49–58. Available at arXiv:math/0209048

  42. Dąbrowski, L., Sitarz, A.: Noncommutative circle bundles and new Dirac operators, Commun. Math. Phys. 318(1), 111–130 (2013). Available at arXiv:1012.3055

  43. Das, B., Ó Buachalla, R., Somberg, P.: A Dolbeault–Dirac spectral triple for quantum projective space. Doc. Math. 25, 1079–1157 (2020). Available at arXiv:1903.07599

  44. De Commer, K., Yamashita, M.: A construction of finite index C\(^\ast \)-algebra inclusions from free actions of compact quantum groups. Publ. Res. Inst. Math. Sci. 49(4), 709–735 (2013). Available at arXiv:1201.4022

  45. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Universitext, Springer, Berlin (2000)

  46. van den Dungen, K., Mesland, B.: Homotopy equivalence in unbounded KK-theory. Ann. K-Theory 5(3), 501–537 (2020). Available at arXiv:1907.04049

  47. van den Dungen, K.: Locally bounded perturbations and (odd) unbounded KK-theory. J. Noncommut. Geom. 12, 1445–1467 (2018). Available at arXiv:1608.02506

  48. van Suijlekom, W.D.: Localizing gauge theories from noncommutative geometry. Adv. Math. 682–708, 290 (2016). Available at arXiv:1411.6482

  49. Ellwood, D.A.: A new characterisation of principal actions. J. Funct. Anal. 173(1), 49–60 (2000)

    Article  MathSciNet  Google Scholar 

  50. Escobales, R.H., Jr., Parker, P.E.: Geometric consequences of the normal curvature cohomology class in umbilic foliations. Indiana Univ. Math. J. 37(2), 389–408 (1988)

    Article  MathSciNet  Google Scholar 

  51. Fathizadeh, F., Khalkhali, M.: Curvature in noncommutative geometry, Advances in Noncommutative Geometry: On the Occasion of Alain Connes’ 70th Birthday (A. Chamseddine, C. Consani, N. Higson, M. Khalkhakli, H. Moscovici, and G. Yu, eds.), Springer, Cham, 2019, pp. 321–420. Available at arXiv:1901.07438

  52. Forsyth, I., Rennie, A.: Factorisation of equivariant spectral triples in unbounded KK-theory. J. Aust. Math. Soc. 107(2), 145–180 (2019). Available at arXiv:1505.02863

  53. Gleason, A.M.: Spaces with a compact Lie group of transformations. Proc. Am. Math. Soc. 1, 35–43 (1950)

    Article  MathSciNet  Google Scholar 

  54. Goffeng, M.: The Pimsner–Voiculescu sequence for coactions of compact Lie groups. Math. Scand. 110(2), 297–319 (2012). Available at arXiv:1004.4333

  55. Goodman, R.W.: One-parameter groups generated by operators in an enveloping algebra. J. Funct. Anal. 6, 218–236 (1970)

    Article  MathSciNet  Google Scholar 

  56. Hajac, P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182(3), 579–617 (1996). Available at arXiv:hep-th/9406129

  57. Hawkins, A., Skalski, A., White, S., Zacharias, J.: On spectral triples on crossed products arising from equicontinuous actions. Math. Scand. 113(2), 262–291 (2013). Available at arXiv:1103.6199

  58. Hermann, R.: A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Am. Math. Soc. 11, 236–242 (1960)

    Article  MathSciNet  Google Scholar 

  59. Higson, N., Roe, J.: Analytic K–homology, Oxford Mathematical Monographs. Oxford University Press, Oxford. Oxford Science Publications (2000)

  60. Homma, Y.: A representation of Spin(4) on the eigenspinors of the Dirac operator on S\(^3\). Tokyo J. Math. 23(2), 453–472 (2000)

  61. Iochum, B.: The impact of NC geometry in particle physics, Noncommutative Geometry and the Standard Model of Elementary Particle Physics (Hesselberg, : Lecture Notes in Phys., vol. 596. Springer, Berlin 2002, 244–259 (1999)

  62. Kaad, J., Lesch, M.: A local global principle for regular operators in Hilbert C\(^\ast \)-modules. J. Funct. Anal. 262(10), 4540–4569 (2012). Available at arXiv:1107.2372

  63. Kaad, J., Lesch, M.: Spectral flow and the unbounded Kasparov product. Adv. Math. 495–530, 248 (2013). Available at arXiv:1110.1472

  64. Kaad, J., van Suijlekom, W.D.: On a theorem of Kučerovský for half-closed chains. J. Operator Theory 82(1) , 115–145 (2019). Available at arXiv:1709.08996

  65. Kaad, J., van Suijlekom, W.D.: Riemannian submersions and factorizations of Dirac operators. J. Noncommut. Geom. 12(3), 1133–1159 (2018). Available at arXiv:1610.02873

  66. Kaad, J.: On the unbounded picture of KK-theory. SIGMA Symmetry Integrability Geom. Methods Appl. 16, Paper No. 082, 21 (2020). Available at arXiv:1901.05161

  67. Kasparov, G.G.: The operator K-functor and extensions of C\(^\ast \)-algebras. Math. USSR Izvestija 16(3), 513–572 (1981)

  68. Kasparov, G.G.: Elliptic and transversally elliptic index theory from the viewpoint of KK-theory. J. Noncommut. Geom. 10, 1303–1378 (2016)

  69. Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100(3), 447–501 (1999)

  70. Kučerovský, D.: The KK-product of unbounded modules. K-Theory 11(1), 17–34 (1997)

  71. Lance, E.C.: Hilbert C\(^\ast \)-Modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge. A toolkit for operator algebraists (1995)

  72. Landi, G., Pagani, C., Reina, C., van Suijlekom, W.D.: Noncommutative families of instantons. Int. Math. Res. Not. IMRN 12 (2008), Art. ID rnn038, 32. Available at arXiv:0710.0721

  73. Landi, G., van Suijlekom, W.D.: Noncommutative instantons from twisted conformal symmetries. Commun. Math. Phys. 271(3), 591–634 (2007). Available at arXiv:math/0601554

  74. Landi, G., van Suijlekom, W.D.: Principal fibrations from noncommutative spheres. Commun. Math. Phys. 260(1), 203–225 (2005). Available at arXiv:math/0410077

  75. Lesch, M., Mesland, B.: Sums of regular selfadjoint operators in Hilbert C*-modules. J. Math. Anal. Appl. 472(1), 947–980 (2019). Available at arXiv:1107.2372

  76. Lord, S., Sukochev, F., Zanin, D.: Singular Traces, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin. (2013)

  77. Meinrenken, E.: Clifford Algebras and Lie Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 58, Springer, Heidelberg (2013)

  78. Mesland, B., Rennie, M., van Suijlekom, W.D.: Curvature of differentiable Hilbert modules and Kasparov modules (2019). Available at arXiv:1911.05008

  79. Mesland, B., Rennie, M.: Nonunital spectral triples and metric completeness in unbounded KK-theory. J. Funct. Anal. 271(9), 2460–2538 (2016). Available at arXiv:1502.04520

  80. Mesland, B.: Unbounded bivariant K-theory and correspondences in noncommutative geometry. J. Reine Angew. Math. 691, 101–172 (2014). Available at arXiv:0904.4383

  81. Meyer, R.: Representations of \(\ast \)-algebras by unbounded operators: C*-hulls, local-global principle, and induction. Doc. Math. 22, 1375–1466 (2017). available at arXiv:1607.04472

  82. Moore, C.C., Schochet, C.L.: Global Analysis on Foliated Spaces, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 9, Cambridge University Press, New York (2006)

  83. Nicolaescu, L.I.: Lectures on the Geometry of Manifolds, 2nd ed. World Scientific Publishing Co., Pte. Ltd., Hackensack (2007)

  84. O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459–469 (1966)

  85. Pierrot, F.: Opérateurs réguliers dans les C\(^\ast \)-modules et structure des C\(^\ast \)-algèbres de groupes de Lie semisimples complexes simplement connexes. J. Lie Theory 16(4), 651–689 (2006)

  86. Plymen, R.J.: Strong Morita equivalence, spinors and symplectic spinors. J. Oper. Theory 16(2), 305–324 (1986)

    MathSciNet  MATH  Google Scholar 

  87. Podleś, P.: Quantum spheres. Lett. Math. Phys. 14(3), 193–202 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  88. Prokhorenkov, I., Richardson, K.: Natural equivariant transversally elliptic Dirac operators. Geom. Dedicata 151 411–429 (2011). Available at arXiv:0805.3340

  89. Quillen, D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)

    Article  MathSciNet  Google Scholar 

  90. Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz–Pimsner algebras of some bi-Hilbertian bimodules. J. Topol. Anal. 9(2), 297–327 (2017). Available at arXiv:1501.05363

  91. Rieffel, M.A., Proper actions of groups on C\(^\ast \)-algebras, Mappings of Operator Algebras (Philadelphia, PA, 1988), vol. 84. Birkhäuser Boston, Boston, MA, 141–182 (1990)

  92. Rieffel, M.A.: Deformation quantization for actions of Rd. Mem. Amer. Math. Soc. 106(506) (1993)

  93. Rieffel, M.A.: K-groups of C\(^\ast \)-algebras deformed by actions of \(\mathbf{R}^d\). J. Funct. Anal. 116(1), 199–214 (1993)

  94. Senior, R.J.: Modular spectral triples and KMS states. Australian National University (2011). (Ph.D. thesis)

  95. Sitarz, A.: Rieffel’s deformation quantization and isospectral deformation. Int. J. Theor. Phys. 40(10), 1693–1696 (2001). Available at arXiv:math/0102075

  96. Skandalis, G.: Some remarks on Kasparov theory. J. Funct. Anal. 56(3), 337–347 (1984)

    Article  MathSciNet  Google Scholar 

  97. Tondeur, P.: Foliations on Riemannian Manifolds. Universitext, Springer, New York (1988)

  98. Várilly, J.C.: Quantum symmetry groups of noncommutative spheres, Commun. Math. Phys. 221(3), 511–523 (2001). Available at arXiv:math/0102065

  99. Wahl, C.: Index theory for actions of compact Lie groups on C\(^\ast \)-algebras. J. Oper. Theory 63(1), 217–242 (2010). Available at arXiv:0707.3207

  100. Yamashita, M.: Connes–Landi deformation of spectral triples. Lett. Math. Phys. 94(3), 263–291 (2010). Available at arXiv:1006.4420

Download references

Acknowledgements

The authors wish to thank Francesca Arici, Ludwik Dąbrowski, Jens Kaad, Matilde Marcolli, Adam Rennie, Andrzej Sitarz, Walter van Suijlekom, Wojciech Szymański, Zhizhang Xie, and Guoliang Yu for helpful conversations. This work was begun while both authors were participants of the Trimester Programme on Noncommutative Geometry and its Applications at the Hausdorff Research Institute for Mathematics in 2014; it also later benefitted from the authors’ participation in the Programme on Bivariant K-Theory in Geometry and Physics at the Erwin Schrödinger International Institute for Mathematics and Physics in 2018. The authors also thank Texas A&M University, the Institut des Hautes Études Scientifiques, Leibniz Universität Hannover, and the Max Planck Institute for Mathematics, Bonn for their hospitality and support in the course of this project. The first author’s research is supported by NSERC Discovery Grant RGPIN-2017-04249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branimir Ćaćić.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Peter–Weyl Theory and G-Hilbert Modules

In this appendix, we provide a sketch of Peter–Weyl theory for continuous representations of compact connected Lie groups on Fréchet spaces in general and for actions on \(C^*\)-algebras and Hilbert \(C^*\)-modules in particular. A detailed account of the general picture can be found in [45, Chapter 4]; specifics related to \(C^*\)-algebras and Hilbert \(C^*\)-modules can be found, for instance, in  [16, Sect. VIII.20; 44, Sect. 2].

For the moment, let E be a \({\mathbf {Z}}_2\)-graded Fréchet space topologised by a countable family of seminorms \(\{ \Vert \cdot \Vert _{E;i} \}_{i\in {\mathbf {N}}}\), and \(\rho : G \rightarrow {{\,\mathrm{GL}\,}}(E)\) a strongly continuous representation of G on E by even isometries.

Definition A.1

For every \(\pi \in \widehat{G}\), the \(\pi \)-isotypical component of E is the closed subspace

$$\begin{aligned} E_\pi :=E_{\pi }^\rho :=\{ T(v): T \in {{\,\mathrm{Hom}\,}}_G(V_\pi ,E), \, v \in V_\pi \}, \end{aligned}$$

which is the range of the idempotent \(P_\pi \in {\mathbf {L}}(E)\) defined by

$$\begin{aligned} \forall e \in E, \quad P_\pi (e) :=d_\pi \int _G \overline{\chi _\pi (g)} \rho _g(e)\,\mathrm {d}{g}. \end{aligned}$$

In particular, the isotypical component of the trivial representation \({\mathbf {1}} \in \widehat{G}\) is the subspace \(E^G\) of fixed points, while the corresponding projection \(P_{{\mathbf {1}}}\) simply averages with respect to the Haar measure.

Proposition A.2

The family of idempotents \(\{ P_\pi \}_{\pi \in \widehat{G}}\) defines an orthogonal resolution of the identity in the sense that

$$\begin{aligned} \forall \pi _1,\pi _2 \in \widehat{G}, \quad P_{\pi _1}P_{\pi _2} = {\left\{ \begin{array}{ll} P_{\pi _1} &{}\text {if }\pi _1=\pi _2,\\ 0 &{}\text {else,} \end{array}\right. } \end{aligned}$$

while \(\sum _{\pi \in \widehat{G}} P_\pi = {{\,\mathrm{id}\,}}_E\) pointwise on the dense subspace

$$\begin{aligned} E^\mathrm {alg}:=E^{\mathrm {alg};\rho } :=\bigoplus _{\pi \in \widehat{G}}^{\mathrm {alg}} E_\pi ; \end{aligned}$$
(A.1)

if E is a Hilbert space and \(\rho \) is unitary, then \(\sum _{\pi \in \widehat{G}} P_\pi = {{\,\mathrm{id}\,}}_E\) strongly in \({\mathbf {L}}(E)\).

Now, for each \(k \in {\mathbf {N}}\), define the subspace of \(C^k\) vectors by

$$\begin{aligned} E^k :=E^{k;\rho } :=\{ e \in E \vert (g \mapsto \rho _g(e)) \in C^k(G,E) \}. \end{aligned}$$
(A.2)

The infinitesimal representation \(\mathrm {d}{\rho } : {\mathfrak {g}}\rightarrow {{\,\mathrm{Hom}\,}}_{\mathbf {C}}(E^1,E)\) then permits us to topologise \(E^k\) as a Fréchet space with the family of seminorms \(\{ \Vert \cdot \Vert _{E;j,\varvec{m}} \}_{(j,\varvec{m}) \in {\mathbf {N}}\times {\mathbf {N}}^k}\) defined by

$$\begin{aligned} \forall j \in {\mathbf {N}}, \, \forall \varvec{m} \in {\mathbf {N}}^k, \, \forall e \in E^k, \quad \Vert e \Vert _{E;j,\varvec{m}} :=\Vert \left( \mathrm {d}\rho (\epsilon _{m_1}) \circ \cdots \circ \mathrm {d}\rho (\epsilon _{m_k})\right) (e)_{E;j} \Vert . \end{aligned}$$

As a result, the subspace of smooth vectors

$$\begin{aligned} E^\infty :=E^{\infty ;\rho } :=\bigcap _{k = 1}^\infty E^{k,\rho } \supset E^{\mathrm {alg};\rho } \end{aligned}$$

also defines a Fréchet space, and \(\mathrm {d}{\rho }\) extends to a representation \(\mathrm {d}{\rho } : {\mathcal {U}}({\mathfrak {g}}) \rightarrow {\mathbf {L}}(E)\) of the universal enveloping algebra \({\mathcal {U}}({\mathfrak {g}})\) of \({\mathfrak {g}}\); in particular, it follows that

$$\begin{aligned} \forall e \in E^\infty , \quad e = \sum _{\pi \in \widehat{G}} P_\pi (e), \end{aligned}$$

with absolute convergence in \(E^\infty \). Finally, in this regard, note that if \(\rho \) is strongly smooth, then \(E = E^\infty \) as vector spaces and \({{\,\mathrm{id}\,}}_E : E^\infty \rightarrow E\) is a continuous bijection.

We now specialise to strongly continuous actions on \(C^*\)-algebras and Hilbert modules.

Definition A.3

A G-\(C^*\)-algebra is a \({\mathbf {Z}}_2\)-graded \(C^*\)-algebra A together with a strongly continuous action \(\alpha : G \rightarrow {{\,\mathrm{Aut}\,}}^+(A)\) of G on A by even \(*\)-automorphisms. The fixed point algebra is the \(C^{*}\)-subalgebra \(A^{G}:=\{ a\in A: \alpha _{g}(a)=a,\,\forall g\in G \}\) of G-fixed vectors.

Suppose that \((A,\alpha )\) is a G-\(C^*\)-algebra. The map \({\mathbf {E}}_A :=P_{{\mathbf {1}}} : A \twoheadrightarrow A^G\) is a faithful conditional expectation onto \(A^G\). More generally, for every \(\pi \in \widehat{G}\), the \(\pi \)-isotypical component \(A_\pi \) defines Hilbert \((A^G,A^G)\)-bimodule with respect to left and right multiplication by \(A^G\) and the Hermitian metric defined by

$$\begin{aligned} \forall a_1,a_2 \in A, \quad \left( a_1, a_2\right) _{A^G} :={\mathbf {E}}_A(a_1^*a_2) = \int _G \alpha _g(a_1^*a_2)\,\mathrm {d}{g}. \end{aligned}$$
(A.3)

In fact, for every \(\pi \in \widehat{G}\), it follows that \((A_\pi )^*= A_{\pi ^*}\), where \(\pi ^*\) is the contragredient of \(\pi \), so that \(A^{\mathrm {alg}}\) defines a dense \(*\)-subalgebra of A; moreover, \(A^\infty \) defines a dense Fréchet pre-\(C^*\)-algebra closed under the holomorphic functional calculus.

Definition A.4

Let \((A,\alpha )\) and \((B,\beta )\) are G-\(C^*\)-algebras. Then a Hilbert G-(AB)-bimodule is a \({\mathbf {Z}}_2\)-graded Hilbert (AB)-bimodule E together with a strongly continuous representation \(U : G \rightarrow {{\,\mathrm{GL}\,}}^+(E)\) of G on E by even Banach space automorphisms, such that

$$\begin{aligned} \forall g \in G, \, \forall a \in A, \, \forall e \in E, \, \forall b \in B, \quad U_g(aeb)= & {} \alpha _g(a)U_g(e)\beta _g(b);\\ \forall g \in G, \, \forall e_1,e_2 \in E, \quad \left( U_g(e_1), U_g(e_2)\right) _B= & {} \beta _g(\left( e_1, e_2\right) _B). \end{aligned}$$

For E a G-(AB) Hilbert module, \({\mathbf {L}}_B(E)\) denotes the \(C^{*}\)-algebra of adjointable endomorphisms, while \({\mathbf {K}}_B(E)\) denotes the \(C^*\)-subalgebra of compact endomorphisms. Although \({\mathbf {K}}_B(E)\) naturally defines a G-\(C^{*}\)-algebra, \({\mathbf {L}}_B(E)\) does not. This motivates the definition of the \(C^{*}\)-subalgebra

$$\begin{aligned} {\mathbf {L}}^{U}_B(E):=\{ T\in {\mathbf {L}}_B(E): g\mapsto U_{g}TU_{g}^{*}\in C(G,{\mathbf {L}}_B(E)) \}\subset {\mathbf {L}}_B(E), \end{aligned}$$
(A.4)

of G-continuous adjointable operators, which is a G-\(C^{*}\)-algebra by construction.

Example A.5

One can complete the G-equivariant \({\mathbf {Z}}_2\)-graded \((A,A^G)\)-bimodule A with respect to the \(A^G\)-valued Hermitian metric \(\left( \cdot , \cdot \right) _{A^G}\) defined by Equation (A.3) to obtain a Hilbert G-\((A,A^G)\)-bimodule \(L^2_v(A) :=L^2_v(A;\alpha )\). In particular, \(\alpha : G \rightarrow {{\,\mathrm{Aut}\,}}^+(A)\) extends to its own spatial implementation \(L^2_v(\alpha ) : G \rightarrow {\mathbf {U}}_{A^G}(L^2_v(A^G))\).

Finally, suppose that \((A,\alpha )\) is a G-\(C^*\)-algebra and that B is a \(C^*\)-algebra with trivial G-action. Then, for every \(\pi \in \widehat{G}\), the \(\pi \)-isotypical component \(E_\pi \) defines a right Hilbert B-submodule of E that is G-equivariantly unitarily equivalent to \(V_\pi \otimes {{\,\mathrm{Hom}\,}}_G(V_\pi ,E)\) endowed with the \(A^G\)-linear Hermitian metric given by

$$\begin{aligned}&\forall v_1,v_2 \in V_\pi , \, \forall T_1,T_2 \in {{\,\mathrm{Hom}\,}}_G(V_\pi ,E),\\&\quad \left( v_1 \otimes T_1, v_2 \otimes T_2\right) _B :=d_\pi ^{-1}\left( T_1(v_1), T_2(v_2)\right) _B; \end{aligned}$$

an explicit unitary equivalence \(\phi _\pi : V_\pi \otimes {{\,\mathrm{Hom}\,}}_G(V_\pi ,E) \rightarrow E_\pi \) is given by

$$\begin{aligned} \forall v \in V_\pi , \, \forall T \in {{\,\mathrm{Hom}\,}}_G(V_\pi ,E), \quad \phi _\pi (v \otimes T) :=d_{\pi }^{1/2}T(v) \end{aligned}$$

with inverse \(\phi _\pi ^{-1} : E_\pi \rightarrow V_\pi \otimes {{\,\mathrm{Hom}\,}}_G(V_\pi ,E)\) given by

$$\begin{aligned} \forall e \in E_\pi , \quad \phi _\pi ^{-1}(e) :=d_\pi ^{1/2}\sum _{i=1}^{d_\pi } v_i \otimes \int _G U_g (e) \otimes \langle v_i, \pi (g^{-1})(\cdot )\rangle \, \mathrm {d}{g}, \end{aligned}$$

where \(\{ v_1,\dots ,v_{d_\pi } \}\) is any orthonormal basis for \(V_\pi \).

Proposition A.6

(Peter-Weyl theorem for Hilbert modules). Let \((A,\alpha )\) be a G-\(C^*\)-algebra and B a \(C^*\)-algebra with trivial G-action. For every \(\pi \in \widehat{G}\), the Hilbert B-submodule \(E_\pi \) is complemented in E with G-invariant orthogonal projection \(P_\pi \in {\mathbf {L}}_B(E)\); moreover, the map

$$\begin{aligned} E \rightarrow \bigoplus _{\pi \in \widehat{G}} E_\pi , \quad e \mapsto (P_\pi (e))_{\pi \in \widehat{G}} \end{aligned}$$
(A.5)

is an isomorphism of right Hilbert G-B-modules (i.e., Hilbert G-\(({\mathbf {C}},B)\)-bimodules).

In the special case of the Hilbert G-\((A,A^G)\)-bimodule \((L^2_v(A),L^2_v(\alpha ))\), for every \(\pi \in {\widehat{G}}\), the norm on \(A_\pi = L^2_v(A)_\pi \) as a right Hilbert B-submodule of \(L^2_v(A)\) is equivalent to the restriction of the \(C^*\)-norm of A [44, Cor. 2.6], and \({\text {Hom}}_G(V_\pi ,L^2_v(A)) = {\text {Hom}}_G(V_\pi ,A)\).

Appendix B: Hermitian Module Connections from Strong Connections

We present a general method for constructing Hilbert module connections (in the sense of Mesland [80]) from strong connections [56] relative to a spectral triple. This reconciles two prominent notions of connection in the noncommutative geometry literature.

We begin with a minimalistic definition of noncommutative fibration over a spectral triple admitting well-defined integration over the fibres (but without presupposing any noncommutative fibrewise family of Dirac operators).

Definition B.1

Let \(({\mathcal {B}},H_0,T)\) be a complete spectral triple for a separable \(C^*\)-algebra B with adequate approximate identity \(\{ \phi _k \}_{k\in {\mathbf {N}}}\). We define a noncommutative fibration over \(({\mathcal {B}},H_0,T)\) to be a triple \((A,{\mathbf {E}}_A,{\mathcal {A}})\) consisting of:

  1. 1.

    a \(C^*\)-algebra A together with non-degenerate \(*\)-monomorphism \(B \hookrightarrow A\), such that \(\{ \phi _k \}_{k\in {\mathbf {N}}}\) defines an approximate identity of A;

  2. 2.

    a faithful conditional expectation \({\mathbf {E}}_A : A \rightarrow B\), such that the resulting completion \(L^2(A;{\mathbf {E}}_A)\) of A to a Hilbert B-module admits a countable frame contained in A;

  3. 3.

    a dense \(*\)-subalgebra \({\mathcal {A}}\subset A\), such that \({\mathcal {B}}\subset {\mathcal {A}}\).

We now define a notion of horizontal differential calculus on a noncommutative fibration compatible with the de Rham calculus on the base—this gives us a suitable functional analytic setting for the strong connection condition as identified by Hajac [56].

Definition B.2

Let \(({\mathcal {B}},H_0,T)\) be a complete spectral triple for a separable \(C^*\)-algebra B, and let \((A,{\mathbf {E}}_A,{\mathcal {A}})\) be a noncommutative fibration over \(({\mathcal {B}},H_0,T)\). We define a horizontal differential calculus for \((A,{\mathbf {E}}_A,{\mathcal {A}})\) to be a triple \((\Omega ,{\mathbf {E}}_\Omega ,\nabla _0)\) consisting of:

  1. 1.

    a \(C^*\)-algebra \(\Omega \) together with a \(*\)-mononorphism \(A \hookrightarrow \Omega \);

  2. 2.

    a positive contraction \({\mathbf {E}}_\Omega : \Omega \rightarrow {\mathbf {L}}(H_0)\), such that \( {\mathbf {E}}_\Omega |_{A} = {\mathbf {E}}_A\) and

    $$\begin{aligned} \forall b \in B,\, \forall \omega \in \Omega , \quad {\mathbf {E}}_\Omega (b\omega ) = b{\mathbf {E}}_\Omega (\omega ), \quad {\mathbf {E}}_\Omega (\omega b) = {\mathbf {E}}_\Omega (\omega )b; \end{aligned}$$
  3. 3.

    a \(*\)-derivation \(\nabla _0 : {\mathcal {A}}\rightarrow \Omega \), such that

    $$\begin{aligned} \forall a \in A, \, \forall b \in {\mathcal {B}}, \quad {\mathbf {E}}_\Omega (a \cdot \nabla _0(b)) = {\mathbf {E}}_A(a) \cdot [T,b]. \end{aligned}$$
    (B.1)

Moreover, we say that \((\Omega ,{\mathbf {E}}_\Omega ,\nabla _0)\) satisfies the strong connection condition whenever

$$\begin{aligned} \forall a \in {\mathcal {A}}, \quad \nabla _0(a) \in \overline{A \cdot \nabla _0({\mathcal {B}})}^{\Omega }. \end{aligned}$$
(B.2)

Finally, we show that the horizontal exterior derivative of a horizontal differential calculus satisfying the strong connection condition canonically induces a Hilbert module connection. Recall that \(\mathbin {{\widehat{\otimes }}^{h}}\) denotes the Haagerup tensor product.

Theorem B.3

Let \(({\mathcal {B}},H_0,T)\) be a complete spectral triple for a separable \(C^*\)-algebra B, let \((A,{\mathbf {E}}_A,{\mathcal {A}})\) be a noncommutative fibration over \(({\mathcal {B}},H_0,T)\), and let \((\Omega ,{\mathbf {E}}_\Omega ,\nabla _0)\) be a horizontal differential calculus for \((A,{\mathbf {E}}_A,{\mathcal {A}})\) that satisfies the strong connection condition. Then \(\nabla _0\) canonically induces a Hermitian T-connection \(\nabla : {\mathcal {A}}\rightarrow L^2(A;{\mathbf {E}}_A) \mathbin {\widehat{\otimes }^h_B} \Omega ^1_T\) on \(L^2(A;{\mathbf {E}}_A)\) by

$$\begin{aligned} \forall a \in {\mathcal {A}}, \quad \nabla (a) :=\sum _{i\in {\mathbf {N}}} \xi _i \mathbin {{\widehat{\otimes }}}{\mathbf {E}}_\Omega \left( \xi _i^*\nabla _0(a)\right) , \end{aligned}$$
(B.3)

where \(\{ \xi _i \}_{i \in {\mathbf {N}}}\) is any frame for \(L^2(A;{\mathbf {E}}_A)\) contained in A.

Proof

Given a frame \(\{ \xi _i \}_{i \in {\mathbf {N}}} \subseteq A\) for \(L^2(A;{\mathbf {E}}_A)\), which exists by assumption, we show that (B.3) defines a B-module connection \(\nabla \). Let \(a \in {\mathcal {A}}\), and write \(\nabla (a)=\sum _k a_{k}\nabla _0(b_{k})\) for \(a_k \in A\) and \(b_k \in {\mathcal {B}}\), so that, by continuity of \({\mathbf {E}}_\Omega \) and closure of \(\Omega ^1_T\) in \({\mathbf {L}}(H_0)\),

$$\begin{aligned} \forall i \in {\mathbf {N}}, \quad {\mathbf {E}}_\Omega (\xi _i^*\nabla _0(a)) = {\mathbf {E}}_\Omega \left(\sum _k \xi _i^*a_k \nabla _0(b_k)\right) = \sum _k {\mathbf {E}}_A(\xi _i^*a_k)[T,b_k] \in \Omega ^1_T; \end{aligned}$$

without loss of generality, we may assume that \(\Vert \nabla _0(a) \Vert \le 1\).

Choose K large enough that \( \left\| \sum _{k> K}a_{k}\nabla _0(b_{k})\right\| ^{2}< \varepsilon /6, \) so that for any n, N,

$$\begin{aligned}&\left\Vert \sum _{n\le |i |\le N} \xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}\nabla _0(a))\right\Vert ^{2}_{h}\\&\le 2\left\Vert \sum _{n\le |i |\le N} \sum _{k\le K}\xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}a_{k}\nabla _0(b_{k}))\right\Vert ^{2}_{h}+2\left\Vert \sum _{n\le |i |\le N} \sum _{k> K}\xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}a_{k}\nabla _0(b_k))\right\Vert ^{2}_{h}\\&\le 2\left\Vert \sum _{n\le |i |\le N} \sum _{k\le K}\xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}a_{k}\nabla _0(b_k))\right\Vert ^{2}_{h}+2\left\Vert \sum _{k> K}a_{k}\nabla _0(b_k)\right\Vert ^{2}_{h}\\&\le 2\left\Vert \sum _{n\le |i |\le N} \sum _{k\le K}\xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}a_{k}\nabla _0(b_k))\right\Vert ^{2}_{h}+\frac{\varepsilon }{3}. \end{aligned}$$

Now choose m and n large enough, so that

$$\begin{aligned}&\left\Vert \sum _{k \le K} (\phi _m a_k - a_k)\nabla _0(b_k)\right\Vert ^2_\Omega<\frac{\varepsilon }{12},\\&\quad \left\Vert \sum _{|i |\ge n} \phi _m \xi _i \mathbf {E}_A(\xi ^*_i \phi _m) \right\Vert _{L^2(A,\mathbf {E}_A)} <\frac{\varepsilon }{12\left\Vert \sum _{k\le K}a_{k}\nabla _0(b_k)\right\Vert ^{2}}. \end{aligned}$$

Then, for any \(N\ge n\) we can estimate

$$\begin{aligned}&\left\Vert \sum _{n\le |i |\le N} \sum _{k\le K}\xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}a_{k}\nabla _0(b_k))\right\Vert ^{2}_{h}\\&\le \left\Vert {\mathbf {E}}_A\left(\sum _{i} \xi _{i}\xi _{i}^{*}\right)\right\Vert \left\Vert \sum _{n\le |i |\le N} \sum _{k,\ell \le K}\nabla _0(b_k)^{*}{\mathbf {E}}_A\left( a_{k}^{*}\xi _{i}\right){\mathbf {E}}_A\left(\xi _{i}^{*}a_{\ell }\right)\nabla _0(b_\ell )\right\Vert \\&\le 2\left\Vert \sum _{n\le |i |\le N} \sum _{k,\ell \le K}\nabla _0(b_k)^{*}{\mathbf {E}}_A(a_{k}^{*}\phi _{m}\xi _{i}){\mathbf {E}}_A\left(\xi _{i}^{*}\phi _{m}a_{\ell }\right)\nabla _0(b_\ell )\right\Vert \\&\quad \quad +2\left\Vert \sum _{k,\ell \le K} \nabla _0(b_k)^{*}(\phi _{m}a_{k}-a_{k})^{*}(\phi _{m}a_{\ell }-a_{\ell })\nabla _0(b_{\ell })\right\Vert \\&\le 2\left\Vert \sum _{n\le |i |\le N} \sum _{k,\ell \le K} \nabla _0(b_k)^{*}{\mathbf {E}}_A(a_{k}^{*}\phi _{m}\xi _{i}){\mathbf {E}}_A\left(\xi _{i}^{*}\phi _{m}a_{\ell }\right)\nabla _0(b_\ell )\right\Vert + \frac{\varepsilon }{6} \end{aligned}$$

Now observe that by [68, Lemma 4.2], we can estimate

$$\begin{aligned} \left( \sum _{|i |\ge n}{\mathbf {E}}_A(a_{k}^{*}\phi _{m}\xi _{i}){\mathbf {E}}_A\left(\xi _{i}^{*}\phi _{m}a_{\ell }\right) \right) _{k,\ell \le K}&=\left( {\mathbf {E}}_A\left( a_{k}^{*}\left( \sum _{|i|\ge n}\phi _{m}\xi _{i}{\mathbf {E}}_A\left( \xi _{i}^{*}\phi _{m}\right) \right) a_{\ell }\right) \right) _{k,\ell \le K}\\&\le \left\Vert \sum _{|i |\ge n}\phi _{m}\xi _{i}{\mathbf {E}}_A\left(\xi _{i}^{*}\phi _{m}\right)\right\Vert \left( {\mathbf {E}}_A(a_{k}^{*}a_{\ell })\right) _{k,\ell \le K}\\&\le \frac{\varepsilon }{12\left\Vert \sum _{k\le K}a_{k}\nabla _0(b_k)\right\Vert ^{2}} \left( {\mathbf {E}}_A(a_{k}^{*}a_{\ell })\right) _{k,\ell \le K}, \end{aligned}$$

as matrices. Therefore

$$\begin{aligned} \left\Vert \sum _{n\le |i |\le N}\sum _{k,\ell \le K}\nabla _0(b_k)^{*} {\mathbf {E}}(a_{k}^{*}\phi _{m}\xi _{i}){\mathbf {E}}\left(\xi _{i}^{*}\phi _{m}a_{\ell }\right)[T,b_{\ell }]\right\Vert \le \frac{\varepsilon }{12}, \end{aligned}$$

and we continue to estimate

This proves that the series is convergent in the Haagerup norm. Independence of the choice of frame \(\{ \xi _{i} \} \subset A\) now follows, for if \(\{ \eta _j \} \subset A\) is another countable frame we write

$$\begin{aligned} \sum _{i} \xi _{i}\otimes {\mathbf {E}}_\Omega (\xi _{i}^{*}\nabla _0(a))&=\sum _{i,j}\eta _{j}\otimes {\mathbf {E}}_A(\eta _{j}^{*}\xi _{i}){\mathbf {E}}_\Omega (\xi _{i}^{*}\nabla _0(a))=\sum _{i,j}\eta _{j}\otimes {\mathbf {E}}_\Omega \left({\mathbf {E}}_A(\eta _{j}^{*}\xi _{i})\xi _{i}^{*}\nabla _0(a)\right)\\&=\sum _{j}\eta _{j}\otimes {\mathbf {E}}_\Omega \left(\sum _{i}\left( \xi _{i}{\mathbf {E}}_A(\xi _{i}^*\eta _{j})\right) ^*\nabla _0(a)\right)=\sum _{j}\eta _{j}\otimes {\mathbf {E}}_\Omega (\eta _{j}^{*}\nabla _0(a)), \end{aligned}$$

where convergence of the relevant sums follows from continuity of \({\mathbf {E}}_A\) and \({\mathbf {E}}_\Omega \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćaćić, B., Mesland, B. Gauge Theory on Noncommutative Riemannian Principal Bundles. Commun. Math. Phys. 388, 107–198 (2021). https://doi.org/10.1007/s00220-021-04187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04187-8

Navigation