Skip to main content
Log in

Emergence of Jumps in Quantum Trajectories via Homogenization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the strong noise regime, we study the homogenization of quantum trajectories i.e. stochastic processes appearing in the context of quantum measurement. When the generator of the average semigroup can be separated into three distinct time scales, we start by describing a homogenized limiting semigroup. This result is of independent interest and is formulated outside of the scope of quantum trajectories. Going back to the quantum context, we show that, in the Meyer–Zheng topology, the time-continuous quantum trajectories converge weakly to the discontinuous trajectories of a pure jump Markov process. Notably, this convergence cannot hold in the usual Skorokhod topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Completely positive maps \(\Phi :M_d({{\mathbb {C}}})\rightarrow M_d({{\mathbb {C}}})\) are linear maps such that for any \(n\in {\mathbb {N}}\), \(\Phi \otimes {{\,\mathrm{Id}\,}}_{M_n({{\mathbb {C}}})}:M_d({{\mathbb {C}}})\otimes M_n({{\mathbb {C}}})\rightarrow M_d({{\mathbb {C}}})\otimes M_n({{\mathbb {C}}})\) is positive.

  2. The Hamiltonian dynamics can also be intrinsic, independent of any additional drive due to the experimentalist.

  3. The acronym GKSL stands for Gorini–Kossakowski–Sudarshan–Lindblad.

  4. By analogy with discrete quantum channels.

  5. In other words a \(C^*\) commutative subalgebra of \(M_d ({{\mathbb {C}}})\).

  6. To be more precise \({{\mathbb {L}}}^0\) is a quotient space where two functions are considered as equal if they coincide almost everywhere with respect to the Lebesgue measure.

  7. We recall that if \(\chi \) is a topological space and \((X_n)_n\) is a sequence of \(\chi \)-valued random variables, we say it converges weakly (or in law) to the \(\chi \)-valued random variable X if and only if for any bounded continuous function \(f:\chi \rightarrow {\mathbb {R}}\), \(\lim _{n \rightarrow \infty } {{\mathbb {E}}} \big [ f(X_n)\big ] ={{\mathbb {E}}} \big [ f(X)\big ]\).

  8. Observe that the transition rate is independent of the \(L^{(1)}_k\)’s and of \(H^{(0)}\). It depends of course of \(H^{(1)}, L^{(0)}_k, L_k^{(2)}\) but also of \(H^{(2)}\) through the eigenvalues \(\tau _{i,j}\) given in Eq. (2.6).

  9. Here also we denote with the same notation the corresponding operator norm on \({\mathrm{End}} (V)\).

  10. This property is equivalent to one of the following assertions:

    • the restriction to \({{\,\mathrm{Ker}\,}}\left[ \left( {{\mathcal {L}}}^{(2)} \right) ^m \right] \) is diagonalizable, with \(m \in {{\mathbb {N}}}\) being the algebraic multiplicity.

    • the algebraic multiplicity m of \(\lambda =0\) matches the geometric multiplicity \(\dim {{\,\mathrm{Ker}\,}}{{\mathcal {L}}}^{(2)}\).

  11. The operator 2-norm of a matrix \(M\in M_d ({{\mathbb {C}}})\) is the operator norm of M considered as an operator on \({{\mathbb {C}}}^d\), the latter being equipped with its standard Hilbert structure.

  12. This operator is defined on the whole matrix space but we identify it with its restriction to diagonal matrices \(\Pi {{\mathcal {L}}}^*\Pi : {{\,\mathrm{Span}\,}}_{{\mathbb {C}}}\{E_{i,i}: i=1,\dotsc ,d\}\rightarrow {{\,\mathrm{Span}\,}}_{{\mathbb {C}}}\{E_{i,i}: i=1,\dotsc ,d\}; X\mapsto \Pi {{\mathcal {L}}}^*\Pi (X)\).

  13. In this formula we adopt the convention that the semigroup \(e^{tT^*}\) acts on a diagonal matrix \({\text {diag}} (x_1,\dotsc ,x_d)\) by transforming it in the diagonal matrix \({\text {diag}} (e^{tT^*}(x_1,\dotsc ,x_d))\).

References

  1. Albert, V.V., Bradlyn, B., Fraas, M., Jiang, L.: Geometry and response of lindbladians. Phys. Rev. X 6(4), 041031 (2016)

    Google Scholar 

  2. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 717, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Alicki, R.: On the detailed balance condition for non-hamiltonian systems. Rep. Math. Phys. 10(2), 249–258 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Balian, R.: Information in statistical physics. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 36(2), 323–353 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bauer, M., Bernard, D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84(4), 044103 (2011)

    Article  ADS  Google Scholar 

  6. Bauer, M., Bernard, D.: Stochastic spikes and strong noise limits of stochastic differential equations. Ann. Henri Poincaré 19(3), 653–693 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, M., Bernard, D., Benoist, T.: Iterated stochastic measurements. J. Phys. A: Math. Theor. 45(49), 494020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer, M., Benoist, T., Bernard, D.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. H. Poincaré 14(4), 639–679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauer, M., Bernard, D., Jin, T.: Stochastic dissipative quantum spin chains (I): quantum fluctuating discrete hydrodynamics. Sci. Post Phys. 3, 033 (2017)

    Article  ADS  Google Scholar 

  10. Bauer, M., Bernard, D., Tilloy, A.: Computing the rates of measurement-induced quantum jumps. J. Phys. A: Math. Theor. 48(25), 25FT02 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauer, M., Bernard, D., Tilloy, A.: Zooming in on quantum trajectories. J. Phys. A: Math. Theor. 49(10), 10LT01 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernardin, C., Chetrite, R., Chhaibi, R., Najnudel, J., Pellegrini, C.: Spiking and collapsing in large noise limits of SDE’s. arXiv preprint arXiv:1810.05629 (2020)

  13. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Perturbation theory for weak measurements in quantum mechanics, systems with finite-dimensional state space. In: Ann. Henri Poincaré, pp. 1–37. Springer (2017)

  14. Belavkin, V.P.: A new wave equation for a continuous nondemolition measurement. Phys. Lett. A 140, 355–358 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  15. Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42(2), 171–201 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Belavkin, V.P.: Nondemolition principle of quantum measurement theory. Found. Phys. 24(5), 685–714 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case. Springer, New York (2009)

    Book  MATH  Google Scholar 

  18. Bouten, L., Gough, J.E.: Asymptotic equivalence of quantum stochastic models. J. Math. Phys. 60(4), 043501 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Barchielli, A., Holevo, A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58(2), 293–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)

    MATH  Google Scholar 

  21. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence (2011). (Corrected reprint of the 1978 original [MR0503330])

  22. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  23. Benoist, T., Pellegrini, C.: Large time behaviour and convergence rate for non demolition quantum trajectories. Commun. Math. Phys. 331(2), 703–723 (2014)

    Article  ADS  MATH  Google Scholar 

  24. Bouten, L., Silberfarb, A.: Adiabatic elimination in quantum stochastic models. Commun. Math. Phys. 283(2), 491–505 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Bouten, L., van Handel, R., James, M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bouten, L., van Handel, R., James, M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Bouten, L., van Handel, R., Silberfarb, A.: Approximation and limit theorems for quantum stochastic models with unbounded coefficients. J. Funct. Anal. 254(12), 3123–3147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Braginsky, V.B., Vorontsov, Y.I., Thorne, K.S.: Quantum nondemolition measurements. Science 209(4456), 547–557 (1980)

    Article  ADS  Google Scholar 

  29. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications, vol. 17. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  30. Cercignani, C.: The Boltzmann equation and its applications. In: Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

  31. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions: Basic Processes and Applications. Wiley, New York (1992)

    Google Scholar 

  32. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  33. Davies, E.B.: Markovian master equations II. Mathematische Annalen 219(2), 147–158 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dalibard, J., Castin, Y., Mölmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580 (1992)

    Article  ADS  Google Scholar 

  35. Diosi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. A Math. Gen. 21, 2885–2898 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Flindt, C., Fricke, C., Hohls, F., Novotnỳ, T., Netočnỳ, K., Brandes, T., Haug, R.J.: Universal oscillations in counting statistics. Proc. Nat. Acad. Sci. 106(25), 10116–10119 (2009)

    Article  ADS  Google Scholar 

  37. Gardiner, C.: Stochastic Methods. Springer Series in Synergetics. A Handbook for the Natural and Social Sciences, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  38. Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007)

    Article  ADS  Google Scholar 

  39. Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52(19), 1657 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  40. Gorban, A.N., Karlin, I.V.: Uniqueness of thermodynamic projector and kinetic basis of molecular individualism. Physica A 336(3), 391–432 (2004)

    Article  ADS  Google Scholar 

  41. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gisin, N., Percival, I.C.: The quantum-state diffusion model applied to open systems. J. Phys. A 25(21), 5677–5691 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer Series in Synergetics. A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum optics, 4th edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  44. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, New York (1980)

    MATH  Google Scholar 

  45. Kurtz, T.G.: Random time changes and convergence in distribution under the Meyer–Zheng conditions. Ann. Probab. 1010–1034 (1991)

  46. Lavis, D.A.: The spin-echo system reconsidered. Found. Phys. 34(4), 669–688 (2004)

    Article  ADS  MATH  Google Scholar 

  47. Lebowitz, J.L.: Microscopic origins of irreversible macroscopic behavior. Phys. A Stat. Mech. Appl. 263(1), 516–527 (1999)

    Article  MathSciNet  Google Scholar 

  48. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61, 981–1015 (1989)

    Article  ADS  Google Scholar 

  50. Macieszczak, K., Guţă, M., Lesanovsky, I., Garrahan, J.P.: Towards a theory of metastability in open quantum dynamics. Phys. Rev. Lett. 116(24), 240404 (2016)

    Article  ADS  Google Scholar 

  51. Meyer, P.A., Zheng, W.A.: Tightness criteria for laws of semimartingales. Ann. I. H. Poincaré Pr. 20(4), 353–372 (1984)

    MathSciNet  MATH  Google Scholar 

  52. Papanicolaou, G.C.: Asymptotic analysis of stochastic equations. In: Studies in Probability Theory, Volume 18 of MAA Stud. Math., pp. 111–179. Math. Assoc. America, Washington, D.C. (1978)

  53. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser (1992)

  54. Pearle, P.: Comment on quantum measurements and stochastic processes. Phys. Rev. Lett. 53, 1775–1775 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  55. Pellegrini, C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36(6), 2332–2353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pellegrini, C.: Markov chains approximation of jump-diffusion stochastic master equations. Ann. Inst. H. Poincaré: Prob. Stat. 46(4), 924–948 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Percival, I.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  58. Pavliotis, G., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer, New York (2008)

    MATH  Google Scholar 

  59. Russo, B., Dye, H.A., et al.: A note on unitary operators in \(c\ast \)-algebras. Duke Math. J. 33(2), 413–416 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rebolledo, R.: Topologie faible et méta-stabilité. In: Séminaire de Probabilités, vol. XXI, pp. 544–562. Springer (1987)

  61. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer, New York (2013)

    MATH  Google Scholar 

  62. Tilloy, A., Bauer, M., Bernard, D.: Spikes in quantum trajectories. Phys. Rev. A 92(5), 052111 (2015)

    Article  ADS  Google Scholar 

  63. Walls, D.F., Milburn, G.J.: Quantum Optics, 2nd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  64. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

T.B. would like to thanks Martin Fraas for enlightening discussions. The research of T.B., R.C. and C.P. has been supported by project QTraj (ANR-20-CE40-0024-01) of the French National Research Agency (ANR). The research of T.B. and C.P. has been supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. The work of C.B. and R.C. has been supported by the projects RETENU ANR-20-CE40-0005-01, LSD ANR-15-CE40-0020-01 of the French National Research Agency (ANR) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement No 715734). J. N. has been supported by the start up grant U100560-109 from the University of Bristol and a Focused Research Grant from the Heibronn Institute for Mathematical Research. This work is supported by the 80 prime project StronQU of MITI-CNRS: “Strong noise limit of stochastic processes and application of quantum systems out of equilibrium”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bernardin.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoist, T., Bernardin, C., Chetrite, R. et al. Emergence of Jumps in Quantum Trajectories via Homogenization . Commun. Math. Phys. 387, 1821–1867 (2021). https://doi.org/10.1007/s00220-021-04179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04179-8

Navigation