Skip to main content
Log in

The Alternating Central Extension of the q-Onsager Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The q-Onsager algebra \(O_q\) is presented by two generators \(W_0\), \(W_1\) and two relations, called the q-Dolan/Grady relations. Recently Baseilhac and Koizumi introduced a current algebra \({\mathcal {A}}_q\) for \(O_q\). Soon afterwards, Baseilhac and Shigechi gave a presentation of \({\mathcal {A}}_q\) by generators and relations. We show that these generators give a PBW basis for \({\mathcal {A}}_q\). Using this PBW basis, we show that the algebra \({\mathcal {A}}_q\) is isomorphic to \(O_q \otimes {\mathbb {F}} [z_1, z_2, \ldots ]\), where \({\mathbb {F}}\) is the ground field and \(\lbrace z_n \rbrace _{n=1}^\infty \) are mutually commuting indeterminates. Recall the positive part \(U^+_q\) of the quantized enveloping algebra \(U_q(\widehat{{\mathfrak {s}}{\mathfrak {l}}}_2)\). Our results show that \(O_q\) is related to \({\mathcal {A}}_q\) in the same way that \(U^+_q\) is related to the alternating central extension of \(U^+_q\). For this reason, we propose to call \({\mathcal {A}}_q\) the alternating central extension of \(O_q\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baseilhac, P.: An integrable structure related with tridiagonal algebras. Nucl. Phys. B 705, 605–619 (2005). arXiv:math-ph/0408025

    Article  ADS  MathSciNet  Google Scholar 

  2. Baseilhac, P.: Deformed Dolan-Grady relations in quantum integrable models. Nucl. Phys. B 709, 491–521 (2005). arXiv:hep-th/0404149

    Article  ADS  MathSciNet  Google Scholar 

  3. Baseilhac, P.: The alternating presentation of \(U_q(\widehat{{\mathfrak{g}}{\mathfrak{l}}}_2)\) from Freidel-Maillet algebras. Nucl. Phys. B 967, 115400 (2021). arXiv:2011.01572

    Article  MathSciNet  Google Scholar 

  4. Baseilhac, P., Belliard, S.: Generalized \(q\)-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93, 213–228 (2010). arXiv:0906.1215

    Article  ADS  MathSciNet  Google Scholar 

  5. Baseilhac, P., Belliard, S.: The half-infinite XXZ chain in Onsager’s approach. Nucl. Phys. B 873, 550–584 (2013). arXiv:1211.6304

    Article  ADS  MathSciNet  Google Scholar 

  6. Baseilhac, P., Belliard, S.: Non-Abelian symmetries of the half-infinite XXZ spin chain. Nucl. Phys. B 916, 373–385 (2017). arXiv:1611.05390

    Article  ADS  MathSciNet  Google Scholar 

  7. Baseilhac, P., Belliard, S.: An attractive basis for the \(q\)-Onsager algebra. Preprint arXiv:1704.02950

  8. Baseilhac, P., Koizumi, K.: A new (in)finite dimensional algebra for quantum integrable models. Nucl. Phys. B 720, 325–347 (2005). arXiv:math-ph/0503036

    Article  ADS  MathSciNet  Google Scholar 

  9. Baseilhac, P., Koizumi, K.: A deformed analogue of Onsager’s symmetry in the \(XXZ\) open spin chain. J. Stat. Mech. Theory Exp. 2005, no. 10, P10005 (electronic). arXiv:hep-th/0507053

  10. Baseilhac, P., Koizumi, K.: Exact spectrum of the \(XXZ\) open spin chain from the \(q\)-Onsager algebra representation theory. J. Stat. Mech. Theory Exp. 2007, no. 9, P09006. (electronic). arXiv:hep-th/0703106

  11. Baseilhac, P., Kojima, T.: Correlation functions of the half-infinite XXZ spin chain with a triangular boundary. J. Stat. Mech. (2014) P09004. arXiv:1309.7785

  12. Baseilhac, P., Kojima, T.: Form factors of the half-infinite XXZ spin chain with a triangular boundary. Nucl. Phys. B 880, 378–413 (2014). arXiv:1404.0491

    Article  ADS  Google Scholar 

  13. Baseilhac, P., Kolb, S.: Braid group action and root vectors for the \(q\)-Onsager algebra. Transform. Groups 25, 363–389 (2020). arXiv:1706.08747

    Article  MathSciNet  Google Scholar 

  14. Baseilhac, P., Shigechi, K.: A new current algebra and the reflection equation. Lett. Math. Phys. 92, 47–65 (2010). arXiv:0906.1482v2

    Article  ADS  MathSciNet  Google Scholar 

  15. Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  16. Brualdi, R.A.: Introductory Combinatorics, 5E. Pearson Prentice Hall, Upper Saddle River (2010)

    Google Scholar 

  17. Carter, R.: Lie Algebras of Finite and Affine Type. Cambridge Studies in Advanced Mathematics, vol. 96. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  18. Damiani, I.: A basis of type Poincare–Birkoff–Witt for the quantum algebra of \(\widehat{{\mathfrak{s}}{\mathfrak{l}}}_2\). J. Algebra 161, 291–310 (1993)

    Article  MathSciNet  Google Scholar 

  19. Ito, T.: TD-pairs and the \(q\)-Onsager algebra. Sugaku Expo. 32, 205–232 (2019)

    Article  Google Scholar 

  20. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to \({P}\)- and \({Q}\)-polynomial association schemes. In: Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence, pp. 167–192 (2001). arXiv:math.CO/0406556

  21. Ito, T., Terwilliger, P.: The shape of a tridiagonal pair. J. Pure Appl. Algebra 188, 145–160 (2004). arXiv:math/0304244

    Article  MathSciNet  Google Scholar 

  22. Ito, T., Terwilliger, P.: Tridiagonal pairs of \(q\)-Racah type. J. Algebra 322, 68–93 (2009). arXiv:0807.0271

    Article  MathSciNet  Google Scholar 

  23. Ito, T., Terwilliger, P.: The augmented tridiagonal algebra. Kyushu J. Math. 64, 81–144 (2010). arXiv:0904.2889

    Article  MathSciNet  Google Scholar 

  24. Kolb, S.: Quantum symmetric Kac–Moody pairs. Adv. Math. 267, 395–469 (2014). arXiv:1207.6036

    Article  MathSciNet  Google Scholar 

  25. Lu, M., Wang, W.: A Drinfeld type presentation of affine \(\iota \)quantum groups I: split ADE type. Preprint arXiv:2009.04542

  26. Lu, M., Ruan, S., Wang, W.: \(\iota \)Hall algebra of the projective line and \(q\)-Onsager algebra. Preprint arXiv:2010.00646

  27. The Sage Developers. Sage Mathematics Software (Version 9.2). The Sage Development Team (2020). http://www.sagemath.org

  28. Terwilliger, P.: The subconstituent algebra of an association scheme III. J. Algebraic Combin. 2, 177–210 (1993)

    Article  MathSciNet  Google Scholar 

  29. Terwilliger, P.: Two relations that generalize the \(q\)-Serre relations and the Dolan-Grady relations. In: Physics and Combinatorics 1999 (Nagoya), pp. 377–398. World Scientific Publishing, River Edge (2001). arXiv:math.QA/0307016

  30. Terwilliger, P.: The universal Askey-Wilson algebra. SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011) Paper 069. arXiv:1104.2813

  31. Terwilliger, P.: The Lusztig automorphism of the \(q\)-Onsager algebra. J. Algebra 506, 56–75 (2018). arXiv:1706.05546

    Article  MathSciNet  Google Scholar 

  32. Terwilliger, P.: The \(q\)-Onsager algebra and the positive part of \(U_q(\widehat{{{s}}{\mathfrak{l}}}_2)\). Linear Algebra Appl. 521, 19–56 (2017). arXiv:1506.08666

    Article  MathSciNet  Google Scholar 

  33. Terwilliger, P.: The \(q\)-Onsager algebra and the universal Askey–Wilson algebra. SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018) Paper No. 044. arXiv:1801.06083

  34. Terwilliger, P.: An action of the free product \({\mathbb{Z}}_2 \star {\mathbb{Z}}_2 \star {\mathbb{Z}}_2\) on the \(q\)-Onsager algebra and its current algebra. Nucl. Phys. B 936, 306–319 (2018). arXiv:1808.09901

    Article  ADS  Google Scholar 

  35. Terwilliger, P.: The alternating PBW basis for the positive part of \(U_q(\widehat{{\mathfrak{s}}{\mathfrak{l}}}_2)\). J. Math. Phys. 60, 071704 (2019). arXiv:1902.00721

    Article  ADS  MathSciNet  Google Scholar 

  36. Terwilliger, P.: The alternating central extension for the positive part of \(U_q(\widehat{{\mathfrak{s}}{\mathfrak{l}}}_2)\). Nucl. Phys. B 947, 114729 (2019). arXiv:1907.09872

    Article  Google Scholar 

  37. Terwilliger, P.: A conjecture concerning the \(q\)-Onsager algebra. Nucl. Phys. B 966, 115391 (2021). arXiv:2101.09860

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Pascal Baseilhac for many discussions about the algebras \({\mathcal {A}}_q\) and \(O_q\). The author thanks Stefan Kolb for helpful comments about the center of \(O_q\). The author thanks Travis Scrimshaw for checking the relations in Proposition 5.1 using SageMath [27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Terwilliger.

Additional information

Communicated by J.-D. Gier

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix we list some relations that hold in \({\mathcal {A}}_q\). We will define an algebra \({\mathcal {A}}^\vee _q\) that is a homomorphic preimage of \({\mathcal {A}}_q\). All the results in this appendix are about \({\mathcal {A}}^\vee _q\).

Define the algebra \({\mathcal {A}}^\vee _q\) by generators

$$\begin{aligned} \lbrace {\mathcal {W}}_{-k}\rbrace _{k\in {\mathbb {N}}}, \qquad \lbrace {\mathcal {W}}_{k+1}\rbrace _{k\in {\mathbb {N}}},\qquad \lbrace {\mathcal {G}}_{k+1}\rbrace _{k\in {\mathbb {N}}}, \qquad \lbrace {\tilde{\mathcal {G}}}_{k+1}\rbrace _{k\in {\mathbb {N}}} \end{aligned}$$

and the following relations. For \(k \in {\mathbb {N}}\),

$$\begin{aligned}&[{\mathcal {W}}_0, {\mathcal {W}}_{k+1}]= [{\mathcal {W}}_{-k}, {\mathcal {W}}_{1}]= ({\mathcal {{\tilde{G}}}}_{k+1} - {\mathcal {G}}_{k+1})/(q+q^{-1}), \end{aligned}$$
(60)
$$\begin{aligned}&[{\mathcal {W}}_0, {\mathcal {G}}_{k+1}]_q= [{\mathcal {{\tilde{G}}}}_{k+1}, {\mathcal {W}}_{0}]_q= \rho {\mathcal {W}}_{-k-1}-\rho {\mathcal {W}}_{k+1}, \end{aligned}$$
(61)
$$\begin{aligned}&[{\mathcal {G}}_{k+1}, {\mathcal {W}}_{1}]_q= [{\mathcal {W}}_{1}, {{\tilde{\mathcal {G}}}}_{k+1}]_q= \rho {\mathcal {W}}_{k+2}-\rho {\mathcal {W}}_{-k}, \end{aligned}$$
(62)
$$\begin{aligned}&[{\mathcal {W}}_{0}, {\mathcal {W}}_{-k}]=0, \qquad [{\mathcal {W}}_{1}, {\mathcal {W}}_{k+1}]= 0. \end{aligned}$$
(63)

Recall that \(\rho =-(q^2-q^{-2})^2\), and define \({\mathcal {G}}_0\), \({\tilde{\mathcal {G}}}_0\) as in (14).

The algebra \({\mathcal {A}}^\vee _q\) has an automorphism \(\sigma \) and an antiautomorphism \(\dagger \) that satisfy Lemmas 3.13.3. For \({\mathcal {A}}^\vee _q\) we define the generating functions \({\mathcal {W}}^+(t)\), \({\mathcal {W}}^-(t)\), \({\mathcal {G}}(t)\), \({\tilde{\mathcal {G}}}(t)\) as in Definition 3.4. In terms of these generating functions the relations (60)–(63) look as follows:

$$\begin{aligned}&[{\mathcal {W}}_0, {\mathcal {W}}^+(t) ]= [{\mathcal {W}}^-(t), {\mathcal {W}}_1 ]= t^{-1}({\tilde{\mathcal {G}}}(t)-{\mathcal {G}}(t))/(q+q^{-1}), \end{aligned}$$
(64)
$$\begin{aligned}&[{\mathcal {W}}_0, {\mathcal {G}}(t) ]_q = [{\tilde{\mathcal {G}}}(t), {\mathcal {W}}_0 ]_q = \rho {\mathcal {W}}^-(t)-\rho t {\mathcal {W}}^+(t), \end{aligned}$$
(65)
$$\begin{aligned}&[{\mathcal {G}}(t), {\mathcal {W}}_1 ]_q = [{\mathcal {W}}_1, {\tilde{\mathcal {G}}}(t) ]_q = \rho {\mathcal {W}}^+(t) -\rho t {\mathcal {W}}^-(t), \end{aligned}$$
(66)
$$\begin{aligned}&[{\mathcal {W}}_0, {\mathcal {W}}^-(t) ]= 0, \qquad [{\mathcal {W}}_1, {\mathcal {W}}^+(t) ]= 0. \end{aligned}$$
(67)

Let s denote an indeterminate that commutes with t. Define the generating functions

$$\begin{aligned} A(s,t)&=[{\mathcal {W}}^-(s), {\mathcal {W}}^-(t) ], \\ B(s,t)&=[{\mathcal {W}}^+(s), {\mathcal {W}}^+(t) ], \\ C(s,t)&=[{\mathcal {W}}^-(s), {\mathcal {W}}^+(t) ]+ [{\mathcal {W}}^+(s), {\mathcal {W}}^-(t) ], \\ D(s,t)&=s [{\mathcal {W}}^-(s), {\mathcal {G}}(t) ]+ t [{\mathcal {G}}(s), {\mathcal {W}}^-(t) ], \\ E(s,t)&=s [{\mathcal {W}}^-(s), {\tilde{\mathcal {G}}}(t) ]+ t [{\tilde{\mathcal {G}}}(s), {\mathcal {W}}^-(t) ], \\ F(s,t)&=s [{\mathcal {W}}^+(s), {\mathcal {G}}(t) ]+ t [{\mathcal {G}}(s), {\mathcal {W}}^+(t) ], \\ G(s,t)&=s [{\mathcal {W}}^+(s), {\tilde{\mathcal {G}}}(t) ]+ t [{\tilde{\mathcal {G}}}(s), {\mathcal {W}}^+(t) ], \\ H(s,t)&=[{\mathcal {G}}(s), {\mathcal {G}}(t) ], \\ I(s,t)&=[{\tilde{\mathcal {G}}}(s), {\tilde{\mathcal {G}}}(t) ], \\ J(s,t)&=[{\tilde{\mathcal {G}}}(s), {\mathcal {G}}(t) ]+ [{\mathcal {G}}(s), {\tilde{\mathcal {G}}}(t) ]\end{aligned}$$

and also

$$\begin{aligned} K(s,t)&=[{\mathcal {W}}^-(s), {\mathcal {G}}(t) ]_q - [{\mathcal {W}}^-(t), {\mathcal {G}}(s) ]_q - s[{\mathcal {W}}^+(s), {\mathcal {G}}(t) ]_q + t[{\mathcal {W}}^+(t), {\mathcal {G}}(s) ]_q, \\ L(s,t)&=[{\mathcal {G}}(s), {\mathcal {W}}^+(t) ]_q - [{\mathcal {G}}(t), {\mathcal {W}}^+(s) ]_q - t[{\mathcal {G}}(s), {\mathcal {W}}^-(t) ]_q + s[{\mathcal {G}}(t), {\mathcal {W}}^-(s) ]_q, \\ M(s,t)&=[{\tilde{\mathcal {G}}}(s), {\mathcal {W}}^-(t) ]_q - [{\tilde{\mathcal {G}}}(t), {\mathcal {W}}^-(s) ]_q - t[{\tilde{\mathcal {G}}}(s), {\mathcal {W}}^+(t) ]_q + s[{\tilde{\mathcal {G}}}(t), {\mathcal {W}}^+(s) ]_q, \\ N(s,t)&=[{\mathcal {W}}^+(s), {\tilde{\mathcal {G}}}(t) ]_q - [{\mathcal {W}}^+(t), {\tilde{\mathcal {G}}}(s) ]_q - s[{\mathcal {W}}^-(s), {\tilde{\mathcal {G}}}(t) ]_q + t[{\mathcal {W}}^-(t), {\tilde{\mathcal {G}}}(s) ]_q, \\ P(s,t)&=\frac{t^{-1} [{\mathcal {G}}(s), {\tilde{\mathcal {G}}}(t) ]- s^{-1} [{\mathcal {G}}(t),{\tilde{\mathcal {G}}}(s) ]}{\rho (q+q^{-1})} - [{\mathcal {W}}^-(t), {\mathcal {W}}^+(s)]_q + [{\mathcal {W}}^-(s), {\mathcal {W}}^+(t)]_q \\&\quad -st [{\mathcal {W}}^+(t), {\mathcal {W}}^-(s)]_q +st [{\mathcal {W}}^+(s), {\mathcal {W}}^-(t)]_q -t[{\mathcal {W}}^-(s), {\mathcal {W}}^-(t) ]_q \\&\quad +s [{\mathcal {W}}^-(t), {\mathcal {W}}^-(s) ]_q -s[{\mathcal {W}}^+(s), {\mathcal {W}}^+(t) ]_q +t [{\mathcal {W}}^+(t), {\mathcal {W}}^+(s) ]_q, \\ Q(s,t)&=\frac{t^{-1} [{\tilde{\mathcal {G}}}(s), {\mathcal {G}}(t) ]- s^{-1} [{\tilde{\mathcal {G}}}(t),{\mathcal {G}}(s) ]}{\rho (q+q^{-1})} - [{\mathcal {W}}^+(t), {\mathcal {W}}^-(s)]_q + [{\mathcal {W}}^+(s), {\mathcal {W}}^-(t)]_q \\&\quad -st [{\mathcal {W}}^-(t), {\mathcal {W}}^+(s)]_q +st [{\mathcal {W}}^-(s), {\mathcal {W}}^+(t)]_q -t[{\mathcal {W}}^+(s), {\mathcal {W}}^+(t) ]_q \\&\quad +s [{\mathcal {W}}^+(t), {\mathcal {W}}^+(s) ]_q -s[{\mathcal {W}}^-(s), {\mathcal {W}}^-(t) ]_q +t [{\mathcal {W}}^-(t), {\mathcal {W}}^-(s) ]_q, \\ R(s,t)&=[{\mathcal {G}}(s), {\tilde{\mathcal {G}}}(t)]_q - [{\mathcal {G}}(t), {\tilde{\mathcal {G}}}(s)]_q -(q+q^{-1})\rho t [{\mathcal {W}}^-(t), {\mathcal {W}}^+(s)]\\&\qquad +(q+q^{-1}) \rho s [{\mathcal {W}}^-(s), {\mathcal {W}}^+(t)], \\ S(s,t)&= [{\tilde{\mathcal {G}}}(s), {\mathcal {G}}(t)]_q - [{\tilde{\mathcal {G}}}(t), {\mathcal {G}}(s)]_q - (q+q^{-1})\rho t [{\mathcal {W}}^+(t), {\mathcal {W}}^-(s)]\\&\qquad +(q+q^{-1}) \rho s [{\mathcal {W}}^+(s), {\mathcal {W}}^-(t)]. \end{aligned}$$

One checks that

$$\begin{aligned} P(s,t)+ Q(s,t)&= (q+q^{-1})(1+st)C(s,t)+\frac{s^{-1}+t^{-1}}{(q+q^{-1})\rho } J(s,t) \\&\qquad -(q+q^{-1})(s+t)A(s,t) -(q+q^{-1})(s+t)B(s,t), \\ R(s,t)+S(s,t)&= \rho (q+q^{-1})(s+t) C(s,t) + (q+q^{-1}) J(s,t). \end{aligned}$$

For \({\mathcal {A}}^\vee _q\) the maps \(\sigma \), \(\dagger \) act on \(A(s,t), B(s,t), \ldots , S(s,t)\) as follow:

u

A(st)

B(st)

C(st)

D(st)

E(st)

F(st)

\(\sigma (u)\)

B(st)

A(st)

C(st)

G(st)

F(st)

E(st)

\(\dagger (u)\)

\(-A(s,t)\)

\(-B(s,t)\)

\(-C(s,t)\)

\(-E(s,t)\)

\(-D(s,t)\)

\(-G(s,t)\)

u

G(st)

H(st)

I(st)

J(st)

K(st)

L(st)

\(\sigma (u)\)

D(st)

I(st)

H(st)

J(st)

N(st)

M(st)

\(\dagger (u)\)

\(-F(s,t)\)

\(-I(s,t)\)

\(-H(s,t)\)

\(-J(s,t)\)

\(-M(s,t)\)

\(-N(s,t)\)

u

M(st)

N(st)

P(st)

Q(st)

R(st)

S(st)

\(\sigma (u)\)

L(st)

K(st)

Q(st)

P(st)

S(st)

R(st)

\(\dagger (u)\)

\(-K(s,t)\)

\(-L(s,t)\)

\(-Q(s,t)\)

\(-P(s,t)\)

\(-R(s,t)\)

\(-S(s,t)\)

By (64)–(67) the following relations hold in \({\mathcal {A}}^\vee _q\):

$$\begin{aligned}{}[{\mathcal {W}}_0, A(s,t)]&=0, \\ [{\mathcal {W}}_0, B(s,t)]&= \frac{G(s,t)-F(s,t)}{st(q+q^{-1})}, \\ [{\mathcal {W}}_0, C(s,t)]&= \frac{E(s,t)-D(s,t)}{st(q+q^{-1})}, \\ [{\mathcal {W}}_0, D(s,t)]_q&= \rho (s+t)A(s,t)- \rho st C(s,t), \\ [E(s,t), {\mathcal {W}}_0 ]_q&= \rho (s+t)A(s,t)- \rho st C(s,t), \\ [{\mathcal {W}}_0, F(s,t)]_q&= \frac{S(s,t)}{q+q^{-1}}-H(s,t)-2\rho s t B(s,t), \\ [G(s,t), {\mathcal {W}}_0 ]_q&= \frac{S(s,t)}{q+q^{-1}}-I(s,t)-2\rho s t B(s,t), \\ [{\mathcal {W}}_0, H(s,t)]_{q^2}&= \rho K(s,t), \\ [I(s,t), {\mathcal {W}}_0 ]_{q^2}&= \rho M(s,t), \\ [{\mathcal {W}}_0, J(s,t)]&= \rho M(s,t)-\rho K(s,t) \end{aligned}$$

and also

$$\begin{aligned}{}[{\mathcal {W}}_0, K(s,t) ]_q&= \frac{q^2+q^{-2}}{q+q^{-1}}H(s,t)+(q+q^{-1}) \rho A(s,t) + (q+q^{-1}) \rho s t B(s,t) \\&\qquad +\frac{J(s,t)}{q+q^{-1}}-S(s,t), \\ [{\mathcal {W}}_0, L(s,t)]_q&= \rho P(s,t)-\frac{s^{-1}+t^{-1}}{q+q^{-1}}H(s,t), \\ [M(s,t), {\mathcal {W}}_0 ]_q&= \frac{q^2+q^{-2}}{q+q^{-1}}I(s,t)+(q+q^{-1}) \rho A(s,t) + (q+q^{-1}) \rho s t B(s,t) \\&\qquad +\frac{J(s,t)}{q+q^{-1}}-S(s,t), \\ [N(s,t), {\mathcal {W}}_0 ]_q&= \rho Q(s,t)-\frac{s^{-1}+t^{-1}}{q+q^{-1}}I(s,t), \\ [P(s,t),{\mathcal {W}}_0]&= (s^{-1}+t^{-1})G(s,t)-(1+s^{-1}t^{-1})E(s,t)\\&\qquad +\frac{(s^{-1}+t^{-1})K(s,t)-L(s,t)-N(s,t)}{q+q^{-1}}, \\ [{\mathcal {W}}_0, Q(s,t) ]&= (s^{-1}+t^{-1})F(s,t)-(1+s^{-1}t^{-1})D(s,t) \\&\qquad +\frac{(s^{-1}+t^{-1})M(s,t)-L(s,t)-N(s,t)}{q+q^{-1}}, \\ [{\mathcal {W}}_0, R(s,t) ]&= \rho (s^{-1}+ t^{-1}) E(s,t) -\rho (s^{-1}+t^{-1}) D(s,t)+ \rho F(s,t)-\rho G(s,t), \\ [{\mathcal {W}}_0, S(s,t)]&= \rho G(s,t)-\rho F(s,t)-(q+q^{-1})\rho K(s,t)+(q+q^{-1})\rho M(s,t). \end{aligned}$$

For the previous 18 equations we apply \(\sigma \) to each side, and obtain the following relations that hold in \({\mathcal {A}}^\vee _q\):

$$\begin{aligned}{}[{\mathcal {W}}_1, A(s,t)]&= \frac{D(s,t)-E(s,t)}{st(q+q^{-1})}, \\ [{\mathcal {W}}_1, B(s,t)]&=0, \\ [{\mathcal {W}}_1, C(s,t)]&= \frac{F(s,t)-G(s,t)}{st(q+q^{-1})}, \\ [D(s,t), {\mathcal {W}}_1 ]_q&= \frac{R(s,t)}{q+q^{-1}}-H(s,t)-2\rho s t A(s,t), \\ [{\mathcal {W}}_1, E(s,t)]_q&= \frac{R(s,t)}{q+q^{-1}}-I(s,t)-2\rho s t A(s,t), \\ [F(s,t), {\mathcal {W}}_1 ]_q&= \rho (s+t)B(s,t)- \rho st C(s,t), \\ [{\mathcal {W}}_1, G(s,t)]_q&= \rho (s+t)B(s,t)- \rho st C(s,t), \\ [H(s,t), {\mathcal {W}}_1 ]_{q^2}&= \rho L(s,t), \\ [{\mathcal {W}}_1, I(s,t)]_{q^2}&= \rho N(s,t), \\ [{\mathcal {W}}_1, J(s,t)]&= \rho L(s,t)-\rho N(s,t) \end{aligned}$$

and also

$$\begin{aligned}{}[K(s,t), {\mathcal {W}}_1 ]_q&= \rho P(s,t)-\frac{s^{-1}+t^{-1}}{q+q^{-1}}H(s,t), \\ [L(s,t), {\mathcal {W}}_1 ]_q&= \frac{q^2+q^{-2}}{q+q^{-1}}H(s,t)+(q+q^{-1}) \rho B(s,t) + (q+q^{-1}) \rho s t A(s,t) \\&\qquad +\frac{J(s,t)}{q+q^{-1}}-R(s,t), \\ [{\mathcal {W}}_1, M(s,t)]_q&= \rho Q(s,t)-\frac{s^{-1}+t^{-1}}{q+q^{-1}}I(s,t), \\ [{\mathcal {W}}_1, N(s,t) ]_q&= \frac{q^2+q^{-2}}{q+q^{-1}}I(s,t)+(q+q^{-1}) \rho B(s,t) + (q+q^{-1}) \rho s t A(s,t) \\&\qquad +\frac{J(s,t)}{q+q^{-1}}-R(s,t), \\ [{\mathcal {W}}_1, P(s,t) ]&= (s^{-1}+t^{-1})E(s,t)-(1+s^{-1}t^{-1})G(s,t)\\&\qquad +\frac{(s^{-1}+t^{-1})L(s,t)-M(s,t)-K(s,t)}{q+q^{-1}}, \\ [Q(s,t),{\mathcal {W}}_1]&= (s^{-1}+t^{-1})D(s,t)-(1+s^{-1}t^{-1})F(s,t)\\&\qquad +\frac{(s^{-1}+t^{-1})N(s,t)-M(s,t)-K(s,t)}{q+q^{-1}}, \\ [{\mathcal {W}}_1, R(s,t)]&= \rho D(s,t)-\rho E(s,t)-(q+q^{-1})\rho N(s,t)+(q+q^{-1})\rho L(s,t), \\ [{\mathcal {W}}_1, S(s,t) ]&= \rho (s^{-1}+ t^{-1}) F(s,t) -\rho (s^{-1}+t^{-1}) G(s,t)+ \rho E(s,t)-\rho D(s,t). \end{aligned}$$

Appendix B

In this appendix we describe the elements

$$\begin{aligned} \lbrace {\mathcal {W}}^\Downarrow _{-n}\rbrace _{n\in {\mathbb {N}}}, \quad \lbrace {\mathcal {W}}^\Downarrow _{n+1}\rbrace _{n\in {\mathbb {N}}}, \quad \lbrace {\mathcal {G}}^\downarrow _{n}\rbrace _{n\in {\mathbb {N}}}, \quad \lbrace {\tilde{\mathcal {G}}}^\downarrow _{n}\rbrace _{n \in {\mathbb {N}}} \end{aligned}$$

that appeared in Sect. 8. For \(n \in {\mathbb {N}}\),

$$\begin{aligned} {\mathcal {W}}^\Downarrow _{-n}&= \sum _{\ell =0}^{\lfloor n /2 \rfloor } (-1)^\ell \left( {\begin{array}{c}n-\ell \\ \ell \end{array}}\right) [2 ]^{-2\ell }_q {\mathcal {W}}_{2\ell -n}, \end{aligned}$$
(68)
$$\begin{aligned} {\mathcal {W}}^\Downarrow _{n+1}&= \sum _{\ell =0}^{\lfloor n /2 \rfloor } (-1)^\ell \left( {\begin{array}{c}n-\ell \\ \ell \end{array}}\right) [2 ]^{-2\ell }_q {\mathcal {W}}_{n-2\ell +1}. \end{aligned}$$
(69)

In the tables below, we display \({\mathcal {W}}^\Downarrow _{-n}\) and \({\mathcal {W}}^\Downarrow _{n+1}\) for \(0 \le n \le 8\).

n

\({\mathcal {W}}^\Downarrow _{-n}\)

0

\({\mathcal {W}}_{0} \)

1

\({\mathcal {W}}_{-1} \)

2

\({\mathcal {W}}_{-2} - {\mathcal {W}}_{0} [2 ]^{-2}_q \)

3

\({\mathcal {W}}_{-3} -2 {\mathcal {W}}_{-1} [2 ]^{-2}_q\)

4

\({\mathcal {W}}_{-4} -3 {\mathcal {W}}_{-2} [2 ]^{-2}_q + {\mathcal {W}}_{0} [2 ]^{-4}_q \)

5

\({\mathcal {W}}_{-5} -4 {\mathcal {W}}_{-3} [2 ]^{-2}_q + 3{\mathcal {W}}_{-1} [2 ]^{-4}_q \)

6

\({\mathcal {W}}_{-6} -5 {\mathcal {W}}_{-4} [2 ]^{-2}_q + 6{\mathcal {W}}_{-2} [2 ]^{-4}_q - {\mathcal {W}}_{0} [2 ]^{-6}_q \)

7

\({\mathcal {W}}_{-7} -6 {\mathcal {W}}_{-5} [2 ]^{-2}_q + 10{\mathcal {W}}_{-3} [2 ]^{-4}_q - 4{\mathcal {W}}_{-1} [2 ]^{-6}_q \)

8

\({\mathcal {W}}_{-8} -7 {\mathcal {W}}_{-6} [2 ]^{-2}_q + 15{\mathcal {W}}_{-4} [2 ]^{-4}_q - 10{\mathcal {W}}_{-2} [2 ]^{-6}_q +{\mathcal {W}}_{0} [2 ]^{-8}_q\)

n

\({\mathcal {W}}^\Downarrow _{n+1}\)

0

\({\mathcal {W}}_{1} \)

1

\({\mathcal {W}}_{2} \)

2

\({\mathcal {W}}_{3} - {\mathcal {W}}_{1} [2 ]^{-2}_q \)

3

\({\mathcal {W}}_{4} -2 {\mathcal {W}}_{2} [2 ]^{-2}_q\)

4

\({\mathcal {W}}_{5} -3 {\mathcal {W}}_{3} [2 ]^{-2}_q + {\mathcal {W}}_{1} [2 ]^{-4}_q \)

5

\({\mathcal {W}}_{6} -4 {\mathcal {W}}_{4} [2 ]^{-2}_q + 3{\mathcal {W}}_{2} [2 ]^{-4}_q \)

6

\({\mathcal {W}}_{7} -5 {\mathcal {W}}_{5} [2 ]^{-2}_q + 6{\mathcal {W}}_{3} [2 ]^{-4}_q - {\mathcal {W}}_{1} [2 ]^{-6}_q \)

7

\({\mathcal {W}}_{8} -6 {\mathcal {W}}_{6} [2 ]^{-2}_q + 10{\mathcal {W}}_{4} [2 ]^{-4}_q - 4{\mathcal {W}}_{2} [2 ]^{-6}_q \)

8

\({\mathcal {W}}_{9} -7 {\mathcal {W}}_{7} [2 ]^{-2}_q + 15{\mathcal {W}}_{5} [2 ]^{-4}_q - 10{\mathcal {W}}_{3} [2 ]^{-6}_q +{\mathcal {W}}_{1} [2 ]^{-8}_q\)

Recall that

$$\begin{aligned} {\mathcal {G}}^\downarrow _0={\mathcal {G}}_0= -(q-q^{-1}) [2 ]^2_q, \qquad \qquad {\tilde{\mathcal {G}}}^\downarrow _0={\tilde{\mathcal {G}}}_0= -(q-q^{-1}) [2 ]^2_q. \end{aligned}$$

For \(n\ge 1\),

$$\begin{aligned} {\mathcal {G}}^\downarrow _n&= \sum _{\ell =0}^{\lfloor (n-1) /2 \rfloor } (-1)^\ell \left( {\begin{array}{c}n-1-\ell \\ \ell \end{array}}\right) [2 ]^{-2\ell }_q {\mathcal {G}}_{n-2\ell }, \end{aligned}$$
(70)
$$\begin{aligned} {\tilde{\mathcal {G}}}^\downarrow _n&= \sum _{\ell =0}^{\lfloor (n-1) /2 \rfloor } (-1)^\ell \left( {\begin{array}{c}n-1-\ell \\ \ell \end{array}}\right) [2 ]^{-2\ell }_q {\tilde{\mathcal {G}}}_{n-2\ell }. \end{aligned}$$
(71)

In the tables below, we display \({\mathcal {G}}^\downarrow _n\) and \({\tilde{\mathcal {G}}}^\downarrow _n\) for \(1 \le n \le 9\).

n

\({\mathcal {G}}^\downarrow _{n}\)

1

\({\mathcal {G}}_{1} \)

2

\({\mathcal {G}}_{2} \)

3

\({\mathcal {G}}_{3} - {\mathcal {G}}_{1} [2 ]^{-2}_q \)

4

\({\mathcal {G}}_{4} -2 {\mathcal {G}}_{2} [2 ]^{-2}_q\)

5

\({\mathcal {G}}_{5} -3 {\mathcal {G}}_{3} [2 ]^{-2}_q + {\mathcal {G}}_{1} [2 ]^{-4}_q \)

6

\({\mathcal {G}}_{6} -4 {\mathcal {G}}_{4} [2 ]^{-2}_q + 3{\mathcal {G}}_{2} [2 ]^{-4}_q \)

7

\({\mathcal {G}}_{7} -5 {\mathcal {G}}_{5} [2 ]^{-2}_q + 6{\mathcal {G}}_{3} [2 ]^{-4}_q - {\mathcal {G}}_{1} [2 ]^{-6}_q \)

8

\({\mathcal {G}}_{8} -6 {\mathcal {G}}_{6} [2 ]^{-2}_q + 10{\mathcal {G}}_{4} [2 ]^{-4}_q - 4{\mathcal {G}}_{2} [2 ]^{-6}_q \)

9

\({\mathcal {G}}_{9} -7 {\mathcal {G}}_{7} [2 ]^{-2}_q + 15{\mathcal {G}}_{5} [2 ]^{-4}_q - 10{\mathcal {G}}_{3} [2 ]^{-6}_q +{\mathcal {G}}_{1} [2 ]^{-8}_q\)

n

\({\tilde{\mathcal {G}}}^\downarrow _{n}\)

1

\({\tilde{\mathcal {G}}}_{1} \)

2

\({\tilde{\mathcal {G}}}_{2} \)

3

\({\tilde{\mathcal {G}}}_{3} - {\tilde{\mathcal {G}}}_{1} [2 ]^{-2}_q \)

4

\({\tilde{\mathcal {G}}}_{4} -2 {\tilde{\mathcal {G}}}_{2} [2 ]^{-2}_q\)

5

\({\tilde{\mathcal {G}}}_{5} -3 {\tilde{\mathcal {G}}}_{3} [2 ]^{-2}_q + {\tilde{\mathcal {G}}}_{1} [2 ]^{-4}_q \)

6

\({\tilde{\mathcal {G}}}_{6} -4 {\tilde{\mathcal {G}}}_{4} [2 ]^{-2}_q + 3{\tilde{\mathcal {G}}}_{2} [2 ]^{-4}_q \)

7

\({\tilde{\mathcal {G}}}_{7} -5 {\tilde{\mathcal {G}}}_{5} [2 ]^{-2}_q + 6{\tilde{\mathcal {G}}}_{3} [2 ]^{-4}_q - {\tilde{\mathcal {G}}}_{1} [2 ]^{-6}_q \)

8

\({\tilde{\mathcal {G}}}_{8} -6 {\tilde{\mathcal {G}}}_{6} [2 ]^{-2}_q + 10{\tilde{\mathcal {G}}}_{4} [2 ]^{-4}_q - 4{\tilde{\mathcal {G}}}_{2} [2 ]^{-6}_q \)

9

\({\tilde{\mathcal {G}}}_{9} -7 {\tilde{\mathcal {G}}}_{7} [2 ]^{-2}_q + 15{\tilde{\mathcal {G}}}_{5} [2 ]^{-4}_q - 10{\tilde{\mathcal {G}}}_{3} [2 ]^{-6}_q +{\tilde{\mathcal {G}}}_{1} [2 ]^{-8}_q\)

Appendix C

In this appendix we give some details from the proof of Theorem 6.1. In that proof we invoke the Bergman diamond lemma. In our discussion of that lemma we list the overlap ambiguities; there are four types (i)–(iv). Our goal in this appendix is to show that all the overlap ambiguities are resolvable. Our strategy is to express the overlap ambiguities in terms of generating functions that involve mutually commuting indeterminates rst. There are four overlap ambiguities of type (i). Here is the first one. Using the GF reduction rules, let us evaluate the overlap ambiguity

$$\begin{aligned} {\mathcal {W}}^+(t) {\mathcal {W}}^-(s) {\mathcal {G}}(r). \end{aligned}$$
(72)

We can proceed in two ways. If we evaluate \({\mathcal {W}}^+(t) {\mathcal {W}}^-(s)\) first, then we find that (72) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(-a'_{r, t}b'_{t, s}e_{t, r} - a'_{r, t}B'_{t, s}e_{s, r} + A'_{r, t}b'_{r, s}e_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(-e_{t, s} + a'_{r, t}B'_{t, s}e_{s, r} + A'_{r, t}B'_{r, s}e_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, s} + a'_{r, t}b'_{t, s}e_{t, r} - A'_{r, t}b'_{r, s}e_{r, t} - A'_{r, t}B'_{r, s}e_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(b_{r, s}a_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(A'_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(e_{t, s}f_{t, r} + A_{r, t}B_{t, s} + A'_{r, t}b'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(-e_{t, s}f_{t, r} + a_{r, t}B_{r, s} + a'_{r, t}b'_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(e_{t, s}f_{s, r} + a'_{r, t}B'_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(-e_{t, s}f_{s, r} + A_{r, t}b_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(A'_{r, t}b_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(-e_{t, s}F_{t, r} + a'_{r, t}B_{t, s} + A'_{r, t}B_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(e_{t, s}F_{s, r} + a'_{r, t}b_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(a_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(e_{t, s}F_{t, r} + A_{r, t}b'_{t, s} + a_{r, t}b'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(-e_{t, s}F_{s, r} + A_{r, t}B'_{t, s}\)

If we evaluate \({\mathcal {W}}^-(s) {\mathcal {G}}(r)\) first, then we find that (72) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(-B_{r, s}A_{s, t}e_{s, r} - B_{r, s}a_{s, t}e_{t, r} + b_{r, s}A_{r, t}e_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(B_{r, s}A_{s, t}e_{s, r} - b_{r, s}A_{r, t}e_{r, s} - b_{r, s}a_{r, t}e_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(B_{r, s}a_{s, t}e_{t, r} + b_{r, s}a_{r, t}e_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(b_{r, s}a_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(B'_{r, s}A'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(b'_{r, s}A'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(B_{r, s}a_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(B'_{r, s}a'_{r, t} + B_{r, s}A_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(b'_{r, s}a'_{s, t} + b_{r, s}A_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(b_{r, s}A'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(B_{r, s}A'_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(B_{r, s}a'_{s, t} + b_{r, s}a'_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(B'_{r, s}a_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(b'_{r, s}a_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(b'_{r,s}A_{s, t} + B'_{r, s}A_{r, t}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

0

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{q^4}{(q - 1)(q + 1)(q^2 + 1)^3(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{-q^4}{(q - 1)(q + 1)(q^2 + 1)^3(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(\frac{-(q^2r - t)(q^2s - r)}{(r - t)(r - s)q^2}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(\frac{-r^2ts(q - 1)^2(q + 1)^2}{(r - t)(r - s)q^2}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(\frac{r^2ts(q - 1)^2(q + 1)^2}{q^2(r - s)(-t + s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(\frac{r(q - 1)(q + 1)(q^2s - t)}{q^2(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(\frac{(q - 1)^2(q + 1)^2(r^2s - r^2t - r + t)rs}{q^2(r - s)(r - t)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(\frac{-r(q - 1)(q + 1)(q^2r^2s^2 - q^2rs^2t - q^2s^2 + q^2st - r^2s^2 + rs^2t + rs - rt)}{q^2(r - s)(r - t)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(\frac{rt(q - 1)(q + 1)(q^2s - r)}{(r - t)(r - s)q^2}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(\frac{-str(q - 1)^2(q + 1)^2}{q^2(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(\frac{r(q - 1)(q + 1)(q^2st + rs - rt - st)}{(r - t)(-t + s)q^2}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(\frac{rs(q - 1)(q + 1)(q^2r - t)}{(r - t)(r - s)q^2}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(\frac{-r^2(q - 1)(q + 1)(q^2s - t)}{q^2(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(\frac{(q - 1)^2(q + 1)^2r^2s}{(r - t)(-t + s)q^2}\)

The overlap ambiguity (72) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} \tilde{\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {G}}(r). \end{aligned}$$
(73)

We can proceed in two ways. If we evaluate \(\tilde{\mathcal {G}}(t) {\mathcal {W}}^-(s)\) first, then we find that (73) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, s} b_{r, s} + B'_{t, s} A'_{r, s} - f_{s, r} b'_{t, s} e_{t, r} A'_{t, s} - B'_{t, s} f_{t, r} e_{s, r} a'_{s, t} - F_{s, r} b'_{t, s} e_{t, r} b_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, s} b_{r, t} + b'_{t, s} A'_{r, t} - f_{s, r} b'_{t, s} e_{t, r} a'_{t, s} - B'_{t, s} f_{t, r} e_{s, r} A'_{s, t} - B'_{t, s} F_{t, r} e_{s, r} b_{r, t} \)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(f_{s, r} b'_{t, s} e_{t, s} a'_{t, r} - F_{s, r} b'_{t, s} e_{t, s} B_{t, r} - B'_{t, s} f_{t, r} e_{s, t} a'_{t, r} + B'_{t, s} f_{t, r} e_{s, r} A'_{r, t}\)

 

\( + B'_{t, s} F_{t, r} e_{s, t} B_{t, r} + F_{s, r} b'_{t, s} e_{t, r} B_{t, s} + B'_{t, s} F_{t, r} e_{s, r}b_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, s}B_{r, s} + B'_{t, s}a'_{r, s} + f_{s, r}b'_{t, s}e_{t, s}A'_{t, r} - F_{s, r}b'_{t, s}e_{t, s}b_{t, r} - B'_{t, s}f_{t, r}e_{s, t}A'_{t, r}\)

 

\(+ B'_{t, s}f_{t, r}e_{s, r}a'_{r, t} + B'_{t, s}F_{t, r}e_{s, t}b_{t, r} - F_{s, r}b'_{t, s}e_{t, r}B_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, s}B_{r, t} + b'_{t, s}a'_{r, t} - f_{s, r}b'_{t, s}e_{t, s}A'_{s, r} + f_{s, r}b'_{t, s}e_{t, r}a'_{r, s} + F_{s, r}b'_{t, s}e_{t, s}b_{s, r}\)

 

\(+ B'_{t, s}f_{t, r}e_{s, t}A'_{s, r} - B'_{t, s}F_{t, r}e_{s, t}b_{s, r} - B'_{t, s}F_{t, r}e_{s, r}B_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(-f_{s, r}b'_{t, s}e_{t, s}a'_{s, r} + f_{s, r} b'_{t, s} e_{t, r} A'_{r, s} + F_{s, r} b'_{t, s} e_{t, s} B_{s, r} + B'_{t, s} f_{t, r} e_{s, t} a'_{s, r}\)

 

\(- B'_{t, s}F_{t, r}e_{s, t}B_{s, r} + F_{s, r}b'_{t, s}e_{t, r}b_{t, s} + B'_{t, s}F_{t, r}e_{s, r}B_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\( b_{t, s}B'_{r, s} + B'_{t, s}a_{r, s} - f_{s, r}b'_{t, s}e_{t, r}a_{t, s} - B'_{t, s}f_{t, r}e_{s, r}A_{s, t} - F_{s, r}b'_{t, s}e_{t, r}B'_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, s}B'_{r, t} + b'_{t, s}a_{r, t} - f_{s, r}b'_{t, s}e_{t, r}A_{t, s} - B'_{t, s}f_{t, r}e_{s, r}a_{s, t} - B'_{t, s}F_{t, r}e_{s, r}B'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(f_{s, r}b'_{t, s}e_{t, s}A_{t, r} - F_{s, r}b'_{t, s}e_{t, s}b'_{t, r} - B'_{t, s}f_{t, r}e_{s, t}A_{t, r} + B'_{t, s}f_{t, r}e_{s, r}a_{r, t}\)

 

\( + B'_{t, s}F_{t, r}e_{s, t}b'_{t, r} + F_{s, r}b'_{t, s}e_{t, r}b'_{t, s} + B'_{t, s}F_{t, r}e_{s, r}B'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, s}b'_{r, s} + B'_{t, s}A_{r, s} + f_{s, r}b'_{t, s}e_{t, s}a_{t, r} - F_{s, r}b'_{t, s}e_{t, s}B'_{t, r} - B'_{t, s}f_{t, r}e_{s, t}a_{t, r} \)

 

\(+ B'_{t, s}f_{t, r}e_{s, r}A_{r, t} + B'_{t, s}F_{t, r}e_{s, t}B'_{t, r} - F_{s, r}b'_{t, s}e_{t, r}b'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, s}b'_{r, t} + b'_{t, s}A_{r, t} - f_{s, r}b'_{t, s}e_{t, s}a_{s, r} + f_{s, r}b'_{t, s}e_{t, r}A_{r, s} + F_{s, r}b'_{t, s}e_{t, s}B'_{s, r} \)

 

\(+ B'_{t, s}f_{t, r}e_{s, t}a_{s, r} - B'_{t, s}F_{t, r}e_{s, t}B'_{s, r} - B'_{t, s}F_{t, r}e_{s, r}b'_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-f_{s, r}b'_{t, s}e_{t, s}A_{s, r} + f_{s, r}b'_{t, s}e_{t, r}a_{r, s} + F_{s, r}b'_{t, s}e_{t, s}b'_{s, r} + B'_{t, s}f_{t, r}e_{s, t}A_{s, r}\)

 

\(- B'_{t, s}F_{t, r}e_{s, t}b'_{s, r} + F_{s, r}b'_{t, s}e_{t, r}B'_{t, s} + B'_{t, s}F_{t, r}e_{s, r}b'_{s, t}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

\(-B_{t, s}F_{s, r} - b_{t, s}F_{t, r}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(B_{t, s}f_{s, r} + b_{t, s}f_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(-B_{t, s}f_{s, r} - B'_{t, s}F_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(-b_{t, s}f_{t, r} - F_{s, r}b'_{t, s}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(-f_{s, r}b'_{t, s} - B'_{t, s}f_{t, r}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(b_{t, s}F_{t, r} + f_{s, r}b'_{t, s}\)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(B_{t, s}F_{s, r} + B'_{t, s}f_{t, r}\)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(b'_{t, s}F_{s,r} + B'_{t, s}F_{t, r}\)

If we evaluate \({\mathcal {W}}^-(s) {\mathcal {G}}(r)\) first, then we find that (73) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{r, s}b_{t, s} + B'_{r, s}A'_{t, s} - B_{r, s}f_{t, s}e_{t, r}b_{r, s} + B_{r, s}F_{t, s}e_{t, r}A'_{t, s} - b_{r, s}f_{t, r}e_{t, s}B_{s, r}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(b_{r, s}B_{t, s} + B'_{r, s}a'_{t, s} + B_{r, s}f_{t, s}e_{s, r}b_{r, t} + B_{r, s}F_{t, s}e_{s, r}A'_{r, t} - b_{r, s}f_{t, r}e_{r, s}b_{r, t} \)

 

\(+ B_{r, s}F_{t, s}e_{t, r}a'_{t, s} + b_{r, s}f_{t, r}e_{t, s}B_{t, r} - b_{r, s}F_{t, r}e_{r, s}A'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(B_{r, s}B_{t, r} + b'_{r, s}a'_{t, r} - B_{r, s}f_{t, s}e_{s, r}b_{s, t} + B_{r, s}f_{t, s}e_{t, r}B_{t, s} - B_{r, s}F_{t, s}e_{s, r}A'_{s, t}\)

 

\( + b_{r, s}f_{t, r}e_{r, s}b_{s, t} + b_{r, s}F_{t, r}e_{r, s}A'_{s, t} + b_{r, s}F_{t, r}e_{t, s}a'_{t, r}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{r, s}b_{t, r} + b'_{r, s}A'_{t, r} - B_{r, s}f_{t, s}e_{t, r}B_{r, s} + b_{r, s}F_{t, r}e_{t, s}A'_{t, r} - b_{r, s}f_{t, r}e_{t, s}b_{s, r}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{r, s}f_{t, s}e_{s, r}B_{r, t} + B_{r, s}F_{t, s}e_{s, r}a'_{r, t} - b_{r, s}f_{t, r}e_{r, s}B_{r, t} - B_{r, s}F_{t, s}e_{t, r}a'_{r, s}\)

 

\( - b_{r, s}F_{t, r}e_{t, s}A'_{s, r} + b_{r, s}f_{t, r}e_{t, s}b_{t, r} - b_{r, s}F_{t, r}e_{r, s}a'_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(-B_{r, s}f_{t, s}e_{s, r}B_{s, t} + B_{r, s}f_{t, s}e_{t, r}b_{t, s} - B_{r, s}F_{t, s}e_{s, r}a'_{s, t} + b_{r, s}f_{t, r}e_{r, s}B_{s, t}\)

 

\( - B_{r, s}F_{t, s}e_{t, r}A'_{r, s} - b_{r, s}F_{t, r}e_{t, s}a'_{s, r} + b_{r, s}F_{t, r}e_{r, s}a'_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{r, s}B'_{t, s} + B'_{r, s}a_{t, s} - B_{r, s}f_{t, s}e_{t, r}B'_{r, s} + B_{r, s}F_{t, s}e_{t, r}a_{t, s} - b_{r, s}f_{t, r}e_{t, s}b'_{s, r}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\( b_{r, s}b'_{t, s} + B'_{r, s}A_{t, s} + B_{r, s}f_{t, s}e_{s, r}B'_{r, t} + B_{r, s}F_{t, s}e_{s, r}a_{r, t} - b_{r, s}f_{t, r}e_{r, s}B'_{r, t}\)

 

\( + B_{r, s}F_{t, s}e_{t, r}A_{t, s} + b_{r, s}f_{t, r}e_{t, s}b'_{t, r} - b_{r, s}F_{t, r}e_{r, s}a_{r, t} \)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(B_{r, s}b'_{t, r} + b'_{r, s}A_{t, r} - B_{r, s}f_{t, s}e_{s, r}B'_{s, t} + B_{r, s}f_{t, s}e_{t, r}b'_{t, s} - B_{r, s}F_{t, s}e_{s, r}a_{s, t} \)

 

\(+ b_{r, s}f_{t, r}e_{r, s}B'_{s, t} + b_{r, s}F_{t, r}e_{t, s}A_{t, r} + b_{r, s}F_{t, r}e_{r, s}a_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{r, s}B'_{t, r} + b'_{r, s}a_{t, r} - B_{r, s}f_{t, s}e_{t, r}b'_{r, s} + b_{r, s}F_{t, r}e_{t, s}a_{t, r} - b_{r, s}f_{t, r}e_{t, s}B'_{s, r}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{r, s}f_{t, s}e_{s, r}b'_{r, t} + B_{r, s}F_{t, s}e_{s, r}A_{r, t} - b_{r, s}f_{t, r}e_{r, s}b'_{r, t} - B_{r, s}F_{t, s}e_{t, r}A_{r, s} \)

 

\(- b_{r, s}F_{t, r}e_{t, s}a_{s, r} + b_{r, s}f_{t, r}e_{t, s}B'_{t, r} - b_{r, s}F_{t, r}e_{r, s}A_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-B_{r, s}f_{t, s}e_{s, r}b'_{s, t} + B_{r, s}f_{t, s}e_{t, r}B'_{t, s} + b_{r, s}f_{t, r}e_{r, s}b'_{s, t} - B_{r, s}F_{t, s}e_{t, r}a_{r, s}\)

 

\( - b_{r, s}F_{t, r}e_{t, s}A_{s, r} + b_{r, s}F_{t, r}e_{r, s}A_{s, t} - B_{r, s}F_{t, s}e_{s, r}A_{s, t}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

\(-B_{r, s}F_{t, s} - b_{r, s}F_{t, r}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(-b'_{r, s}F_{t, s} + b_{r, s}f_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(-B'_{r, s}F_{t, r} + B_{r, s}f_{t, s}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(-B_{r, s}f_{t, s} - b_{r, s}f_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(-B'_{r, s}f_{t, r} + B_{r, s}F_{t, s}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(-b'_{r, s}f_{t, s} + b_{r, s}F_{t, r}\)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(b'_{r, s}f_{t, s} + B'_{r, s}f_{t, r}\)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(b'_{r, s}F_{t, s} + B'_{r, s}F_{t, r}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{q^{10}rs^2t^2 - q^8r^2s^2t - 2q^8rs^2t^2 + 2q^6r^2s^2t - q^6r^2st^2 + q^6rs^2t^2 + q^6rs^2 - q^6s^2t - q^4r^2s^2t}{q^6(t-r)(s-t)(r-s)}\)

 

\(+\frac{ 3q^4r^2st^2 - q^4r^2s + q^4st^2 - 3q^2r^2st^2 + q^2r^2t - q^2rt^2 + r^2st^2}{q^6(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{ t(q^2 - 1)(q^8rst^2 - q^6r^2t^2 - q^6rt^2 - q^4r^2st + q^4r^2t^2 + q^4rt - q^4st + 2q^2r^2st - q^2r^2 + q^2rs - r^2st)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{-rst^2(q^2 - 1)^3(q^4t - r)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{r(q^2 - 1)(q^8rst^2 - q^6r^2st - q^6rst^2 + q^4r^2st - q^4rst^2 + q^4rs - q^4st + 2q^2rst^2 - q^2rt + q^2t^2 - rst^2)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{-(q^2 - 1)^2(q^6rst - q^4r^2t - q^2rst + q^2r - q^2s + rst)rt}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(\frac{rst^2(q^2 - 1)^3(q^4s - r)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{s(q^2 - 1)(q^8rt^2 - q^6r^2t - q^6rt^2 - q^4r^2st^2 + q^4r^2s + q^4rt^2 - q^4st^2 + 2q^2r^2st^2 - q^2r^2t + q^2rt^2 - r^2st^2)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{-t^2(q^2 - 1)(q^8rs - q^6r^2 - q^6rs - q^4r^2st + q^4r^2 + q^4rt - q^4st + 2q^2r^*st - q^2r^2 + q^2rs - r^2st)}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{(q^2 - 1)^3(q^4 - rt)t^2sr}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{(q^2 - 1)(q^8st^2 - q^6rst - q^6st^2 - q^4r^2st^2 + q^4r^2s + 2q^2r^2st^2 - q^2r^2t + q^2rt^2 - r^2st^2)r}{q^6(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{(q^2 - 1)^2(q^6st - q^4rt - q^2r^2st + q^2r^2 - q^2rs + r^2st)rt}{q^6(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(\frac{(q^2 - 1)^3(q^4 - rs)rt^2}{q^6(t - r)(s - t)(r - s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

\(\frac{(1-q^2)^3(q^2 + 1)^3rt}{q^8}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(\frac{(q^2 - 1)^3(q^2 + 1)^3(q^2r^2s - q^2s - r^2s - r^2t + rst + r)rt}{(-t + r)(r - s)q^8}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(\frac{-tsr(q^2 + 1)^3(q^2 - 1)^4(rs - rt + st - 1)}{q^8(s - t)(r - s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(\frac{rt(q^2 - 1)^3(q^2 + 1)^3(q^2st^2 - q^2s + rst - rt^2 - st^2 + t)}{q^8(s - t)(-t + r)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(\frac{(r - 1)(r + 1)(q^2 + 1)^3(q^2 - 1)^4t^2sr}{(-t + r)(r - s)q^8}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(\frac{-rt(q^2 - 1)^3(q^2 + 1)^3(q^2 rs^2t - q^2 rs + q^2s^2 - q^2 st - rs^2 t + rt)}{q^8(s - t)(r - s)}\)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(\frac{tr^2s(t - 1)(t + 1)(q^2 + 1)^3(q^2 - 1)^4}{q^8(s - t)(-t + r)}\)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

0

The overlap ambiguity (73) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} \tilde{\mathcal {G}}(t) {\mathcal {W}}^+(s) {\mathcal {G}}(r). \end{aligned}$$
(74)

We can proceed in two ways. If we evaluate \(\tilde{\mathcal {G}}(t) {\mathcal {W}}^+(s)\) first, then we find that (74) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(a_{t, s}A'_{r, s} - A_{t, s}f_{s, r}e_{t, r}A'_{t, s} - a_{t, s}f_{t, r}e_{s, r}a'_{s, t} - A_{t, s}F_{s, r}e_{t, r}b_{r, s} + A'_{t, s}b_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\( a'_{t, s}b_{r, t} + A_{t, s}A'_{r, t} - A_{t, s}f_{s, r}e_{t, r}a'_{t, s} - a_{t, s}f_{t, r}e_{s, r}A'_{s, t} - a_{t, s}F_{t, r}e_{s, r}b_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(A_{t, s}f_{s, r}e_{t, s}a'_{t, r} - A_{t, s}F_{s, r}e_{t, s}B_{t, r} - a_{t, s}f_{t, r}e_{s, t}a'_{t, r} + a_{t, s}f_{t, r}e_{s, r}A'_{r, t} \)

 

\(+ a_{t, s}F_{t, r}e_{s, t}B_{t, r} + A_{t, s}F_{s, r}e_{t, r}B_{t, s} + a_{t, s}F_{t, r}e_{s, r}b_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, s}B_{r, s} + a_{t, s}a'_{r, s} + A_{t, s}f_{s, r}e_{t, s}A'_{t, r} - A_{t, s}F_{s, r}e_{t, s}b_{t, r} - a_{t, s}f_{t, r}e_{s, t}A'_{t, r} \)

 

\(+ a_{t, s}f_{t, r}e_{s, r}a'_{r, t} + a_{t, s}F_{t, r}e_{s, t}b_{t, r} - A_{t, s}F_{s, r}e_{t, r}B_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{t, s}B_{r, t} + A_{t, s}a'_{r, t} - A_{t, s}f_{s, r}e_{t, s}A'_{s, r} + A_{t, s}f_{s, r}e_{t, r}a'_{r, s} + A_{t, s}F_{s, r}e_{t, s}b_{s, r} \)

 

\(+ a_{t, s}f_{t, r}e_{s, t}A'_{s, r} - a_{t, s}F_{t, r}e_{s, t}b_{s, r} - a_{t, s}F_{t, r}e_{s, r}B_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(-A_{t, s}f_{s, r}e_{t, s}a'_{s, r} + A_{t, s}f_{s, r}e_{t, r}A'_{r, s} + A_{t, s}F_{s, r}e_{t, s}B_{s, r} + a_{t, s}f_{t, r}e_{s, t}a'_{s, r}\)

 

\( - a_{t, s}F_{t, r}e_{s, t}B_{s, r} + A_{t, s}F_{s, r}e_{t, r}b_{t, s} + a_{t, s}F_{t, r}e_{s, r}B_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, s}B'_{r, s} + a_{t, s}a_{r, s} - A_{t, s}f_{s, r}e_{t, r}a_{t, s} - a_{t, s}f_{t, r}e_{s, r}A_{s, t} - A_{t, s}F_{s, r}e_{t, r}B'_{r, s} \)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(a'_{t, s}B'_{r, t} + A_{t, s}a_{r, t} - A_{t, s}f_{s, r}e_{t, r}A_{t, s} - a_{t, s}f_{t, r}e_{s, r}a_{s, t} - a_{t, s}F_{t, r}e_{s, r}B'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(A_{t, s}f_{s, r}e_{t, s}A_{t, r} - A_{t, s}F_{s, r}e_{t, s}b'_{t, r} - a_{t, s}f_{t, r}e_{s, t}A_{t, r} + a_{t, s}f_{t, r}e_{s, r}a_{r, t}\)

 

\(+ a_{t, s}F_{t, r}e_{s, t}b'_{t, r} + A_{t, s}F_{s, r}e_{t, r}b'_{t, s} + a_{t, s}F_{t, r}e_{s, r}B'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, s}b'_{r, s} + a_{t, s}A_{r, s} + A_{t, s}f_{s, r}e_{t, s}a_{t, r} - A_{t, s}F_{s, r}e_{t, s}B'_{t, r} - a_{t, s}f_{t, r}e_{s, t}a_{t, r} \)

 

\(+ a_{t, s}f_{t, r}e_{s, r}A_{r, t} + a_{t, s}F_{t, r}e_{s, t}B'_{t, r} - A_{t, s}F_{s, r}e_{t, r}b'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{t, s}b'_{r, t} + A_{t, s}A_{r, t} - A_{t, s}f_{s, r}e_{t, s}a_{s, r} + A_{t, s}f_{s, r}e_{t, r}A_{r, s} + A_{t, s}F_{s, r}e_{t, s}B'_{s, r}\)

 

\( + a_{t, s}f_{t, r}e_{s, t}a_{s, r} - a_{t, s}F_{t, r}e_{s, t}B'_{s, r} - a_{t, s}F_{t, r}e_{s, r}b'_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-A_{t, s}f_{s, r}e_{t, s}A_{s, r} + A_{t, s}f_{s, r}e_{t, r}a_{r, s} + A_{t, s}F_{s, r}e_{t, s}b'_{s, r} + a_{t, s}f_{t, r}e_{s, t}A_{s, r}\)

 

\( - a_{t, s}F_{t, r}e_{s, t}b'_{s, r} + A_{t, s}F_{s, r}e_{t, r}B'_{t, s} + a_{t, s}F_{t, r}e_{s, r}b'_{s, t}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

\(-a'_{t, s}F_{s, r} - A'_{t, s}F_{t, r}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(a'_{t, s}f_{s, r} + A'_{t, s}f_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(-a'_{t, s}f_{s, r} - a_{t, s}F_{t, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(-A'_{t, s}f_{t, r} - A_{t, s}F_{s, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(-A_{t, s}f_{s, r} - a_{t, s}f_{t, r}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(A'_{t, s}F_{t, r} + A_{t, s}f_{s, r}\)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(a'_{t, s}F_{s, r} + a_{t, s}f_{t, r}\)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(A_{t, s}F_{s, r} + a_{t, s}F_{t, r}\)

If we evaluate \({\mathcal {W}}^+(s){\mathcal {G}}(r)\) first, then we find that (74) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{r, s}b_{t, s} + a_{r, s}A'_{t, s} -a'_{r, s}f_{t, s}e_{t, r}b_{r,s} -A'_{r, s}f_{t, r}e_{t, s}B_{s,r} + a'_{r, s}F_{t, s}e_{t, r}A'_{t,s} \)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(A'_{r, s}B_{t, s} + a_{r, s}a'_{t, s} + a'_{r, s}f_{t, s}e_{s, r}b_{r, t} + a'_{r, s}F_{t, s}e_{s, r}A'_{r,t} -A'_{r, s}f_{t, r}e_{r, s}b_{r,t} \)

 

\(+ A'_{r, s}f_{t, r}e_{t, s}B_{t,r} -A'_{r, s}F_{t, r}e_{r, s}A'_{r,t} + a'_{r, s}F_{t, s}e_{t, r}a'_{t,s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(a'_{r, s}B_{t, r} + A_{r, s}a'_{t, r} -a'_{r, s}f_{t, s}e_{s, r}b_{s,t} + a'_{r, s}f_{t, s}e_{t, r}B_{t,s} -a'_{r, s}F_{t, s}e_{s, r}A'_{s,t}\)

 

\(+ A'_{r, s}f_{t, r}e_{r, s}b_{s,t}+ A'_{r, s}F_{t, r}e_{r, s}A'_{s,t} + A'_{r, s}F_{t, r}e_{t, s}a'_{t,r}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{r, s}b_{t, r} + A_{r, s}A'_{t, r} -a'_{r, s}f_{t, s}e_{t, r}B_{r,s} -A'_{r, s}f_{t, r}e_{t, s}b_{s,r} + A'_{r, s}F_{t, r}e_{t, s}A'_{t,r} \)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{r, s}f_{t, s}e_{s, r}B_{r, t} + a'_{r, s}F_{t, s}e_{s, r}a'_{r,t} -A'_{r, s}f_{t, r}e_{r, s}B_{r,t} + A'_{r, s}f_{t, r}e_{t, s}b_{t,r} \)

 

\( -A'_{r, s}F_{t, r}e_{r, s}a'_{r,t} -a'_{r, s}F_{t, s}e_{t, r}a'_{r,s} -A'_{r, s}F_{t, r}e_{t, s}A'_{s,r}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\( -a'_{r, s}f_{t, s}e_{s, r} B_{s,t} + a'_{r, s}f_{t, s}e_{t, r}b_{t,s} -a'_{r, s}F_{t, s}e_{s, r}a'_{s,t} + A'_{r, s}f_{t, r}e_{r, s}B_{s,t} \)

 

\(+ A'_{r, s}F_{t, r}e_{r, s}a'_{s,t} -a'_{r, s}F_{t, s}e_{t, r}A'_{r,s} -A'_{r, s}F_{t, r}e_{t, s}a'_{s,r} \)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\( A'_{r, s}B'_{t, s} + a_{r, s}a_{t, s} -a'_{r, s}f_{t, s}e_{t, r}B'_{r,s} -A'_{r, s}f_{t, r}e_{t, s}b'_{s,r} + a'_{r, s}F_{t, s}e_{t, r}a_{t,s} \)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(A'_{r, s}b'_{t, s} + a_{r, s}A_{t, s} + a'_{r, s}f_{t, s}e_{s, r}B'_{r, t} + a'_{r, s}F_{t, s}e_{s, r}a_{r,t} -A'_{r, s}f_{t, r}e_{r, s}B'_{r,t} \)

 

\(+A'_{r, s}f_{t, r}e_{t, s}b'_{t,r} -A'_{r, s}F_{t, r}e_{r, s}a_{r,t} + a'_{r, s}F_{t, s}e_{t, r}A_{t,s} \)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\( a'_{r, s}b'_{t, r} + A_{r, s}A_{t, r} -a'_{r, s}f_{t, s}e_{s, r} B'_{s,t} + a'_{r, s}f_{t, s}e_{t, r}b'_{t,s} -a'_{r, s}F_{t, s}e_{s, r}a_{s,t} \)

 

\(+ A'_{r, s}f_{t, r}e_{r, s}B'_{s,t} + A'_{r, s}F_{t, r}e_{r, s}a_{s,t} +A'_{r, s}F_{t, r}e_{t, s}A_{t,r} \)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{r, s}B'_{t, r} + A_{r, s}a_{t, r} -a'_{r, s}f_{t, s}e_{t, r}b'_{r,s} -A'_{r, s}f_{t, r}e_{t, s}B'_{s,r} + A'_{r, s}F_{t, r}e_{t, s}a_{t,r} \)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\( a'_{r, s}f_{t, s}e_{s, r}b'_{r, t} + a'_{r, s}F_{t, s}e_{s, r}A_{r,t} -A'_{r, s}f_{t, r}e_{r, s}b'_{r,t} + A'_{r, s}f_{t, r}e_{t, s}B'_{t,r} \)

 

\( -A'_{r, s}F_{t, r}e_{r, s}A_{r,t} -a'_{r, s}F_{t, s}e_{t, r}A_{r,s} -A'_{r, s}F_{t, r}e_{t, s}a_{s,r}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\( -a'_{r, s}f_{t, s}e_{s, r} b'_{s,t} + a'_{r, s}f_{t, s}e_{t, r}B'_{t,s} -a'_{r, s}F_{t, s}e_{s, r}A_{s,t} + A'_{r, s}f_{t, r}e_{r, s}b'_{s,t} \)

 

\( + A'_{r, s}F_{t, r}e_{r, s}A_{s,t} -a'_{r, s}F_{t, s}e_{t, r}a_{r,s} -A'_{r, s}F_{t, r}e_{t, s}A_{s,r} \)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

\(-a'_{r, s}F_{t, s} - A'_{r, s}F_{t, r} \)

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(-A_{r, s}F_{t, s} + A'_{r, s}f_{t, r} \)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(-a_{r, s}F_{t, r} + a'_{r, s}f_{t, s} \)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(-a'_{r, s}f_{t, s} - A'_{r, s}f_{t, r} \)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(-a_{r, s}f_{t, r} + a'_{r, s}F_{t, s} \)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(-A_{r, s}f_{t, s} + A'_{r, s}F_{t, r} \)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(A_{r, s}f_{t, s} + a_{r, s}f_{t, r} \)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(A_{r, s}F_{t, s} + a_{r, s}F_{t, r} \)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{s(q^2 - 1)(q^8r^2st^2 - 2q^6r^2st^2 - q^6r^2t + q^6rt^2 + q^4r^2st^2 + q^4r^2s - q^4r^2t - q^4st^2 + q^2r^2t + q^2rt^2 - r^2t}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{t(q^2 - 1)(q^8r^2st^2 - 2q^6r^2st^2 - q^6r^2t + q^6rt^2 + q^4r^2st^2 - q^4st^2 + q^2r^2s + q^2rst - r^2s)}{q^4(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{(q^2 - 1)^2(q^6rst^2 - q^4rst^2 - q^4st + q^4t^2 - q^2rt + rs)tr}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{(q^2 - 1)(q^8rst^2 - 2q^6rst^2 - q^6st + q^6t^2 + q^4rst^2 + q^4rs - q^4rt - q^4t^2 + q^2st + q^2t^2 - st)r^2}{q^4(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{(q^2 - 1)^3(q^4rt - 1)tr^2s}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(\frac{sr^2t(q^2 - 1)^3(q^4st - 1)}{q^4(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{q^{10}r^2st^2 - 3q^8r^2st^2 - q^8r^2t + q^8rt^2 + 3q^6r^2st^2 - q^6rs^2t^2 + q^6r^2s - q^6st^2}{q^4(-t + r)(r - s)(s - t)} \)

 

\(+ \frac{q^4r^2s^2t - q^4r^2st^2 + 2q^4rs^2t^2 - q^4rs^2 + q^4s^2t - 2q^2r^2s^2t - q^2rs^2t^2 + r^2s^2t}{q^4(-t + r)(r - s)(s - t)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{t(q^2 - 1)(q^8r^2st - 2q^6r^2st - q^6r^2 + q^6rt + q^4r^2st - q^4rst^2 + q^4rs - q^4st + q^2r^2st + q^2rst^2 - r^2st)}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{(q^2- 1)^2(q^6rst - q^4rst - q^4s + q^4t - q^2rt^2 + rst)tr}{q^4(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{(q^2 - 1)(q^8rst^2 - 2q^6rst^2 - q^6st + q^6t^2 - q^4r^2t^2 + q^4rst^2 + q^4rs - q^4rt + q^2r^2st + q^2r^2t^2 - r^2st)r}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{(q^2 - 1)^3(q^4t - r)sr^2t}{q^4(-t + r)(s - t)(r - s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(\frac{r^2st(q^2 - 1)^3(q^4t - s)}{q^4(t - r)(s - t)(r - s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t)\)

0

\({\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r)\)

\(\frac{(r - 1)(r + 1)(q^2 + 1)^3(q^2 - 1)^4t^2sr}{(r - s)q^6(-t + r)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s)\)

\(\frac{rt(q^2 - 1)^3(q^2 + 1)^3(q^2rs^2t - q^2rt - rs^2t + rs - s^2 + st)}{q^6(t - s)(r - s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t)\)

\(\frac{tsr^2(t - 1)(t + 1)(q^2 + 1)^3(q^2 - 1)^4}{q^6(s - t)(-t + r)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(\frac{(q^2 - 1)^3(q^2 + 1)^3(q^2r^2s + q^2r^2t - q^2rst - q^2r - r^2s + s)rt}{(r - s)q^6(-t + r)}\)

\({\mathcal {W}}^-(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t)\)

\(\frac{tsr(q^2 + 1)^3(q^2 - 1)^4(rs - rt + st - 1)}{q^6(t - s)(r - s)}\)

\({\mathcal {W}}^-(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s)\)

\(\frac{rt(q^2 - 1)^3(q^2 + 1)^3(q^2rst - q^2rt^2 - q^2st^2 + q^2t + st^2 - s)}{q^6(s - t)(t- r)}\)

\({\mathcal {W}}^+(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

\(\frac{(q^2 + 1)^3(q^2 - 1)^3rt}{q^4}\)

The overlap ambiguity (74) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} \tilde{\mathcal {G}}(t) {\mathcal {W}}^+(s) {\mathcal {W}}^-(r). \end{aligned}$$
(75)

We can proceed in two ways. If we evaluate \(\tilde{\mathcal {G}}(t) {\mathcal {W}}^+(s)\) first, then we find that (75) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(A_{t, s}b_{s, r}e_{t, r} + a_{t, s}b_{t, r}e_{s, r}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(A_{t, s}B_{s, r}e_{t, s} - a_{t, s}B_{t, r}e_{s, t} - a_{t, s}b_{t, r}e_{s, r}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(-A_{t, s}B_{s, r}e_{t, s} - A_{t, s}b_{s, r}e_{t, r} + a_{t, s}B_{t, r}e_{s,t}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\(a_{t, s}b_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(A_{t, s}b_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(A'_{t, s}b'_{t, r} + A_{t, s}B_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\(A'_{t, s}B'_{t, r}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\(a'_{t, s}B'_{s, r}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(a'_{t, s}b'_{s, r} + a_{t, s}B_{t, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(a'_{t, s}B_{s, r} + A'_{t, s}B_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\(a'_{t, s}b_{s, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, s}b_{t, r}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(A_{t, s}b'_{s, r} + a_{t, s}b'_{t, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(A_{t, s}B'_{s, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\(a_{t, s}B'_{t, r}\)

If we evaluate \( {\mathcal {W}}^+(s) {\mathcal {W}}^-(r)\) first, then we find that (75) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{s, r} + b'_{t, r}a'_{r, s}e_{t, r} - B'_{t, r}a'_{t, s}e_{r, t} - B'_{t, r}A'_{t, s}e_{r, s}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(-e_{s, r} + b'_{t, r}A'_{r, s}e_{t, s} + B'_{t, r}A'_{t, s}e_{r, s}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(-b'_{t, r}a'_{r, s}e_{t, r} - b'_{t, r}A'_{r, s}e_{t, s} + B'_{t, r}a'_{t, s}e_{r, t}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\(b_{t, r}a_{t, s}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(-e_{s, r}f_{t, r} + b_{t, r}A_{t, s} + b'_{t, r}a'_{r, s}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(e_{s, r}f_{t, s} + b'_{t, r}A'_{r, s}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\(B'_{t, r}A'_{t, s}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\(e_{s, r}f_{t, r} + B_{t, r}A_{r, s} + B'_{t, r}a'_{t, s}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-e_{s, r}f_{t, s} + B_{t, r}a_{r, s}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(e_{s, r}F_{t, s} + B_{t, r}A'_{r, s}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\(-e_{s, r}F_{t, r} + B_{t, r}a'_{r, s} + b_{t, r}a'_{t, s}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, r}A'_{t, s}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(-e_{s, r}F_{t, s} + b'_{t, r}a_{r, s}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}F_{t, r} + b'_{t, r}A_{r, s} + B'_{t, r}A_{t, s}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\(a_{t, s}B'_{t, r}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{-q^4}{(q^2 + 1)^3(q - 1)(q + 1)(-s + r)}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\( \frac{q^4}{(q^2 + 1)^3(q - 1)(q + 1)(-s + r)}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

0

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\( \frac{-(q^2t - s)(q^2r - t)}{(s - t)(-t + r)q^2}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\( \frac{t(q - 1)(q + 1)(q^2r - s)}{(s - t)(-s + r)q^2}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\( \frac{ts(q - 1)^2(q + 1)^2(rt^2 - st^2 - r + t)}{(s - t)(-t + r)q^2(-s + r)}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\( \frac{-t^2sr(q - 1)^2(q + 1)^2}{(s - t)(-t + r)q^2}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\( \frac{t^2sr(q - 1)^2(q + 1)^2}{(s - t)(-s + r)q^2}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\( \frac{-t(q - 1)(q + 1)(q^2rs^2t - q^2s^2t^2 - q^2rt + q^2st - rs^2t + s^2t^2 + rs - s^2)}{(s - t)(-t + r)q^2(-s + r)}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\( \frac{(q - 1)^2(q + 1)^2t^2s}{(-s + r)(-t + r)q^2}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\( \frac{-t^2(q - 1)(q + 1)(q^2r - s)}{(s - t)(-s + r)q^2}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{ts(q - 1)(q + 1)(q^2r - t)}{(s - t)(-t + r)q^2}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\( \frac{(q - 1)(q + 1)(q^2rs + q^2rt - q^2st - rs)t}{(-s + r)(-t + r)q^2}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\( \frac{-tsr(q - 1)^2(q + 1)^2}{(s - t)(-s + r)q^2}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\( \frac{rt(q - 1)(q + 1)(q^2t - s)}{(-t + r)(s - t)q^2}\)

The overlap ambiguity (75) is resolvable.

We have shown that the overlap ambiguities of type (i) are resolvable.

Next we evaluate the six overlap ambiguities of type (ii). Here is the first one. Let evaluate the overlap ambiguity

$$\begin{aligned} {\mathcal {W}}^-(t) {\mathcal {W}}^-(s) {\mathcal {G}}(r). \end{aligned}$$
(76)

We can proceed in two ways. If we evaluate \({\mathcal {W}}^-(t) {\mathcal {W}}^-(s)\) first, then we find that (76) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(b_{r, t}b'_{r, s}e_{r, t} - B_{r, t}b'_{t, s}e_{t, r} - B_{r, t}B'_{t, s}e_{s, r}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(b_{r, t}B'_{r, s}e_{s, t} + B_{r, t}B'_{t, s}e_{s, r}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(-b_{r, t}b'_{r, s}e_{r, t} - b_{r, t}B'_{r, s}e_{s, t} + B_{r, t}b'_{t, s}e_{t, r}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(B'_{r, t}b_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(b_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(b'_{r, t}B_{t, s} + b_{r, t}b'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(B'_{r, t}B_{r, s} + B_{r, t}b'_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(B_{r, t}B'_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(b'_{r, t}b_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(b_{r, t}b_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(B_{r, t}B_{t, s} + b_{r, t}B_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(B_{r, t}b_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(B'_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(b'_{r, t}b'_{t, s} + B'_{r, t}b'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(b'_{r, t}B'_{t, s}\)

If we evaluate \({\mathcal {W}}^-(s) {\mathcal {G}}(r)\) first, then we find that (76) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(b_{r, s}b'_{r, t}e_{r, s} - B_{r, s}b'_{s, t}e_{s, r} - B_{r, s}B'_{s, t}e_{t, r}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(-b_{r, s}b'_{r, t}e_{r, s} - b_{r, s}B'_{r, t}e_{t, s} + B_{r, s}b'_{s, t}e_{s, r}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{r, s}B'_{r, t}e_{t, s} + B_{r, s}B'_{s, t}e_{t, r}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(B'_{r, t}b_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(b_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(b'_{r, s}b_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(B_{r, s}B'_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(B'_{r, s}B_{r, t} + B_{r, s}b'_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(b'_{r, s}B_{s, t} + b_{r, s}b'_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(b_{r, t}b_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(B_{r, s}b_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(B_{r, s}B_{s, t} + b_{r, s}B_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(B'_{r, t}B'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(b'_{r, s}B'_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(b'_{r, s}b'_{s, t} + B'_{r, s}b'_{r, t}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{-r^2}{(q^2 + 1)^3(r - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{rs}{(-t + s)(q^2 + 1)^3(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{-rt}{(-t + s)(q^2 + 1)^3(r - t)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(\frac{-rt(q - 1)(q + 1)(q^2s - r)}{q^4(r - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(\frac{-rs(q - 1)(q + 1)(q^2t - r)}{q^4(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(\frac{(q - 1)(q + 1)(q^2t - s)r^2}{(r - s)q^4(-t + s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(\frac{rts(q - 1)^2(q + 1)^2}{(r - s)q^4(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(\frac{-rts(q - 1)^2(q + 1)^2}{q^4(r - t)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(\frac{-r^2(q - 1)(q + 1)(q^2s - t)}{q^4(r - t)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(\frac{(q^2t - r)(q^2s - r)}{q^4(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(\frac{-(q - 1)(q + 1)(q^2t - s)r}{(r - s)q^4(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(\frac{r(q - 1)(q + 1)(q^2s - t)}{q^4(r - t)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(\frac{r^2ts(q - 1)^2(q + 1)^2}{q^4(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(\frac{-r^2ts(q - 1)^2(q + 1)^2}{(r - s)q^4(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(\frac{r^2ts(q - 1)^2(q + 1)^2}{q^4(r - t)(-t + s)}\)

The overlap ambiguity (76) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} {\mathcal {W}}^+(t) {\mathcal {W}}^+(s) {\mathcal {G}}(r). \end{aligned}$$
(77)

We can proceed in two ways. If we evaluate \({\mathcal {W}}^+(t) {\mathcal {W}}^+(s)\) first, then we find that (77) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(-a'_{r, t}A_{t, s}e_{t, r} - a'_{r, t}a_{t, s}e_{s, r} + A'_{r, t}A_{r, s}e_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(a'_{r, t}a_{t, s}e_{s, r} + A'_{r, t}a_{r, s}e_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(a'_{r, t}A_{t, s}e_{t, r} - A'_{r, t}A_{r, s}e_{r, t} - A'_{r, t}a_{r, s}e_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(a_{r, t}A'_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(A'_{r, t}a_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(A_{r, t}a'_{t, s} + A'_{r, t}A_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(a_{r, t}a'_{r, s} + a'_{r, t}A_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(a'_{r, t}a_{t, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(A_{r, t}A'_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(A'_{r, t}A'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(a'_{r, t}a'_{t, s} + A'_{r, t}a'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(a'_{r, t}A'_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(a_{r, t}a_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(A_{r, t}A_{t, s} + a_{r, t}A_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(A_{r, t}a_{t, s}\)

If we evaluate \({\mathcal {W}}^+(s) {\mathcal {G}}(r)\) first, then we find that (77) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(-a'_{r, s}A_{s, t}e_{s, r} - a'_{r, s}a_{s, t}e_{t, r} + A'_{r, s}A_{r, t}e_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(a'_{r, s}A_{s, t}e_{s, r} - A'_{r, s}A_{r, t}e_{r, s} - A'_{r, s}a_{r, t}e_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(a'_{r, s}a_{s, t}e_{t, r} + A'_{r, s}a_{r, t}e_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(a_{r, t}A'_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(A'_{r, t}a_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(A_{r, s}A'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(a'_{r, s}a_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(a_{r, s}a'_{r, t} + a'_{r, s}A_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(A_{r, s}a'_{s, t} + A'_{r, s}A_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(A'_{r, t}A'_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(a'_{r, s}A'_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(a'_{r, s}a'_{s, t} + A'_{r, s}a'_{r, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(a_{r, t}a_{r, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(A_{r, s}a_{s, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(A_{r, s}A_{s, t} + a_{r, s}A_{r, t}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(s) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r)\)

\(\frac{q^4r^2}{(r - s)(q^2 + 1)^3(r - t)}\)

\({\mathcal {G}}(r) {\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\)

\(\frac{-q^4rs}{(r - s)(q^2 + 1)^3(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {G}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{q^4tr}{(q^2 + 1)^3(-t + s)(r - t)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^+(t) \)

\(\frac{-sr(q - 1)(q + 1)(q^2r - t)}{(r - t)(r - s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) \)

\(\frac{-tr(q - 1)(q + 1)(q^2r - s)}{(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\mathcal {W}}^+(r) \)

\(\frac{(q - 1)^2(q + 1)^2srt}{(r - s)(-t + s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^+(t) \)

\(\frac{(q - 1)(q + 1)(q^2s - t)r^2}{(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^+(s) \)

\(\frac{-r^2(q - 1)(q + 1)(q^2t - s)}{(r - t)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\mathcal {W}}^+(r) \)

\(\frac{-(q - 1)^2(q + 1)^2srt}{(r - t)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) \)

\(\frac{r^2ts(q - 1)^2(q + 1)^2}{(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\mathcal {W}}^-(t) \)

\(\frac{-r^2ts(q - 1)^2(q + 1)^2}{(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\mathcal {W}}^-(s) \)

\(\frac{r^2ts(q - 1)^2(q + 1)^2}{(r - t)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t) \)

\(\frac{(q^2r - t)(q^2r - s)}{(r - t)(r - s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\mathcal {W}}^+(t) \)

\(\frac{-(q - 1)(q + 1)(q^2s - t)r}{(r - s)(-t + s)}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\mathcal {W}}^+(s) \)

\(\frac{r(q - 1)(q + 1)(q^2t - s)}{(r - t)(-t + s)}\)

The overlap ambiguity (77) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} \tilde{\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s) {\mathcal {G}}(r). \end{aligned}$$
(78)

We can proceed in two ways. If we evaluate \(\tilde{\mathcal {G}}(t) {\tilde{\mathcal {G}}}(s)\) first, then we find that (78) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(1 + f_{s, r}b'_{t, s}A'_{s, r}e_{t, r} + f_{s, r}B'_{t, s}A'_{t, r}e_{s, r} - F_{s, r}B'_{t, s}b_{t, r}e_{s, r} - F_{s, r}b'_{t, s}b_{s, r}e_{t, r}\)

 

\( - f_{s, r}b'_{t, r}a'_{r, s}e_{t, r} + f_{s, r}B'_{t, r}a'_{t, s}e_{r, t} + f_{s, r}B'_{t, r}A'_{t, s}e_{r, s} + F_{s, r}A_{t, s}A'_{s, r}e_{t, r}\)

 

\( + F_{s, r}a_{t, s}A'_{t, r}e_{s, r}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(f_{s, r}b'_{t, s}a'_{s, r}e_{t, s} - f_{s, r}B'_{t, s}a'_{t, r}e_{s, t} - f_{s, r}B'_{t, s}A'_{t, r}e_{s, r} + F_{s, r}B'_{t, s}b_{t, r}e_{s, r}\)

 

\(+ F_{s, r}B'_{t, s}B_{t, r}e_{s, t} - f_{s, r}b'_{t, r}A'_{r, s}e_{t, s} - f_{s, r}B'_{t, r}A'_{t, s}e_{r, s} + F_{s, r}A_{t, s}a'_{s, r}e_{t, s}\)

 

\(- F_{s, r}a_{t, s}a'_{t, r}e_{s, t}- F_{s, r}a_{t, s}A'_{t, r}e_{s, r} - F_{s, r}b'_{t, s}B_{s, r}e_{t, s}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(-f_{s, r}b'_{t, s}a'_{s, r}e_{t, s} - f_{s, r}b'_{t, s}A'_{s, r}e_{t, r} + f_{s, r}B'_{t, s}a'_{t, r}e_{s, t} - F_{s, r}B'_{t, s}B_{t, r}e_{s, t}\)

 

\(+ F_{s, r}b'_{t, s}B_{s, r}e_{t, s} + f_{s, r}b'_{t, r}a'_{r, s}e_{t, r}+ f_{s, r}b'_{t, r}A'_{r, s}e_{t, s} - f_{s, r}B'_{t, r}a'_{t, s}e_{r, t} \)

 

\(+ F_{s, r}a_{t, s}a'_{t, r}e_{s, t} - F_{s, r}A_{t, s}a'_{s, r}e_{t, s} - F_{s, r}A_{t, s}A'_{s, r}e_{t, r} + F_{s, r}b'_{t, s}b_{s, r}e_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\(-f_{s, r}b_{t, r}a_{t, s} + f_{s, r}B'_{t, s}A'_{t, r} + F_{s, r}a_{t, s}A'_{t, r} - F_{s, r}B'_{t, s}b_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(-f_{t, r} - f_{s, r}b_{t, r}A_{t, s} + f_{s, r}b'_{t, s}A'_{s, r} - f_{s, r}b'_{t, r}a'_{r, s} \)

 

\(+ F_{s, r}A_{t, s}A'_{s, r} - F_{s, r}b'_{t, s}b_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(f_{s, r}b_{t, s}A_{t, r} + F_{s, r}A'_{t, s}A_{t, r} - F_{s, r}b_{t, s}b'_{t, r} + f_{s, r}b'_{t, s}a'_{s, r}\)

 

\( - f_{s, r}b'_{t, r}A'_{r, s}+ F_{s, r}A_{t, s}a'_{s, r} - F_{s, r}b'_{t, s}B_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\(f_{s, r}b_{t, s}a_{t, r} + F_{s, r}A'_{t, s}a_{t, r} - F_{s, r}b_{t, s}B'_{t, r} - f_{s, r}B'_{t, r}A'_{t, s}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\(f_{t, r} + f_{s, r}B_{t, s}a_{s, r} - f_{s, r}B_{t, r}A_{r, s} + F_{s, r}a'_{t, s}a_{s, r}\)

 

\( - F_{s, r}B_{t, s}B'_{s, r} - f_{s, r}B'_{t, r}a'_{t, s}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(f_{s, r}B_{t, s}A_{s, r} - f_{s, r}B_{t, r}a_{r, s} + F_{s, r}a'_{t, s}A_{s, r} - F_{s, r}B_{t, s}b'_{s, r}\)

 

\( + f_{s, r}B'_{t, s}a'_{t, r} + F_{s, r}a_{t, s}a'_{t, r} - F_{s, r}B'_{t, s}B_{t, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(f_{s, r}B_{t, s}a'_{s, r} + f_{s, r}b_{t, s}a'_{t, r} - f_{s, r}B_{t, r}A'_{r, s} + F_{s, r}a'_{t, s}a'_{s, r}\)

 

\( + F_{s, r}A'_{t, s}a'_{t, r} - F_{s, r}B_{t, s}B_{s, r} - F_{s, r}b_{t, s}B_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\(-F_{t, r} + f_{s, r}B_{t, s}A'_{s, r} - f_{s, r}B_{t, r}a'_{r, s} - f_{s, r}b_{t, r}a'_{t, s}\)

 

\(+ F_{s, r}a'_{t, s}A'_{s, r} - F_{s, r}B_{t, s}b_{s, r}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(f_{s, r}b_{t, s}A'_{t, r} - f_{s, r}b_{t, r}A'_{t, s} + F_{s, r}A'_{t, s}A'_{t, r} - F_{s, r}b_{t, s}b_{t, r}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(f_{s, r}b'_{t, s}A_{s, r} + f_{s, r}B'_{t, s}A_{t, r} - f_{s, r}b'_{t, r}a_{r, s} + F_{s, r}A_{t, s}A_{s, r}\)

 

\(+ F_{s, r}a_{t, s}A_{t, r} - F_{s, r}b'_{t, s}b'_{s, r} - F_{s, r}B'_{t, s}b'_{t, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(F_{t, r} + f_{s, r}b'_{t, s}a_{s, r} - f_{s, r}b'_{t, r}A_{r, s} - f_{s, r}B'_{t, r}A_{t, s}\)

 

\( + F_{s, r}A_{t, s}a_{s, r} - F_{s, r}b'_{t, s}B'_{s, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\(f_{s, r}B'_{t, s}a_{t, r} - f_{s, r}B'_{t, r}a_{t, s} + F_{s, r}a_{t, s}a_{t, r} - F_{s, r}B'_{t, s}B'_{t, r}\)

If we evaluate \( {\tilde{\mathcal {G}}}(s) {\mathcal {G}}(r)\) first, then we find that (78) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(1 + f_{t, r}b'_{s, t}A'_{t, r}e_{s, r} + f_{t, r}B'_{s, t}A'_{s, r}e_{t, r} - F_{t, r}B'_{s, t}b_{s, r}e_{t, r} - F_{t, r}b'_{s, t}b_{t, r}e_{s, r}\)

 

\( - f_{t, r}b'_{s, r}a'_{r, t}e_{s, r} + f_{t, r}B'_{s, r}a'_{s, t}e_{r, s} + f_{t, r}B'_{s, r}A'_{s, t}e_{r, t} + F_{t, r}A_{s, t}A'_{t, r}e_{s, r}\)

 

\( + F_{t, r}a_{s, t}A'_{s, r}e_{t, r}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(-f_{t, r}b'_{s, t}a'_{t, r}e_{s, t} - f_{t, r}b'_{s, t}A'_{t, r}e_{s, r} + f_{t, r}B'_{s, t}a'_{s, r}e_{t, s} - F_{t, r}B'_{s, t}B_{s, r}e_{t, s}\)

 

\(+ F_{t, r}b'_{s, t}B_{t, r}e_{s, t} + f_{t, r}b'_{s, r}a'_{r, t}e_{s, r}+ f_{t, r}b'_{s, r}A'_{r, t}e_{s, t} - f_{t, r}B'_{s, r}a'_{s, t}e_{r, s} \)

 

\(+ F_{t, r}a_{s, t}a'_{s, r}e_{t, s} - F_{t, r}A_{s, t}a'_{t, r}e_{s, t} - F_{t, r}A_{s, t}A'_{t, r}e_{s, r} + F_{t, r}b'_{s, t}b_{t, r}e_{s, r}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(f_{t, r}b'_{s, t}a'_{t, r}e_{s, t} - f_{t, r}B'_{s, t}a'_{s, r}e_{t, s} - f_{t, r}B'_{s, t}A'_{s, r}e_{t, r} + F_{t, r}B'_{s, t}b_{s, r}e_{t, r}\)

 

\(+ F_{t, r}B'_{s, t}B_{s, r}e_{t, s} - f_{t, r}b'_{s, r}A'_{r, t}e_{s, t} - f_{t, r}B'_{s, r}A'_{s, t}e_{r, t} + F_{t, r}A_{s, t}a'_{t, r}e_{s, t}\)

 

\(- F_{t, r}a_{s, t}a'_{s, r}e_{t, s}- F_{t, r}a_{s, t}A'_{s, r}e_{t, r} - F_{t, r}b'_{s, t}B_{t, r}e_{s, t}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\(-f_{s, r} - f_{t, r}b_{s, r}A_{s, t} + f_{t, r}b'_{s, t}A'_{t, r} - f_{t, r}b'_{s, r}a'_{r, t} \)

 

\(+ F_{t, r}A_{s, t}A'_{t, r} - F_{t, r}b'_{s, t}b_{t, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(-f_{t, r}b_{s, r}a_{s, t} + f_{t, r}B'_{s, t}A'_{s, r} + F_{t, r}a_{s, t}A'_{s, r} - F_{t, r}B'_{s, t}b_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(f_{t, r}B_{s, t}A_{t, r} - f_{t, r}B_{s, r}a_{r, t} + F_{t, r}a'_{s, t}A_{t, r} - F_{t, r}B_{s, t}b'_{t, r}\)

 

\( + f_{t, r}B'_{s, t}a'_{s, r} + F_{t, r}a_{s, t}a'_{s, r} - F_{t, r}B'_{s, t}B_{s, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\(f_{s, r} + f_{t, r}B_{s, t}a_{t, r} - f_{t, r}B_{s, r}A_{r, t} + F_{t, r}a'_{s, t}a_{t, r}\)

 

\( - F_{t, r}B_{s, t}B'_{t, r} - f_{t, r}B'_{s, r}a'_{s, t}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\(f_{t, r}b_{s, t}a_{s, r} + F_{t, r}A'_{s, t}a_{s, r} - F_{t, r}b_{s, t}B'_{s, r} - f_{t, r}B'_{s, r}A'_{s, t}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(f_{t, r}b_{s, t}A_{s, r} + F_{t, r}A'_{s, t}A_{s, r} - F_{t, r}b_{s, t}b'_{s, r} + f_{t, r}b'_{s, t}a'_{t, r}\)

 

\( - f_{t, r}b'_{s, r}A'_{r, t}+ F_{t, r}A_{s, t}a'_{t, r} - F_{t, r}b'_{s, t}B_{t, r}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(f_{t, r}B_{s, t}a'_{t, r} + f_{t, r}b_{s, t}a'_{s, r} - f_{t, r}B_{s, r}A'_{r, t} + F_{t, r}a'_{s, t}a'_{t, r}\)

 

\( + F_{t, r}A'_{s, t}a'_{s, r} - F_{t, r}B_{s, t}B_{t, r} - F_{t, r}b_{s, t}B_{s, r}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\(f_{t, r}b_{s, t}A'_{s, r} - f_{t, r}b_{s, r}A'_{s, t} + F_{t, r}A'_{s, t}A'_{s, r} - F_{t, r}b_{s, t}b_{s, r} \)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(-F_{s, r} + f_{t, r}B_{s, t}A'_{t, r} - f_{t, r}B_{s, r}a'_{r, t} - f_{t, r}b_{s, r}a'_{s, t}\)

 

\(+ F_{t, r}a'_{s, t}A'_{t, r} - F_{t, r}B_{s, t}b_{t, r}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\(f_{t, r}b'_{s, t}A_{t, r} + f_{t, r}B'_{s, t}A_{s, r} - f_{t, r}b'_{s, r}a_{r, t} + F_{t, r}A_{s, t}A_{t, r}\)

 

\(+ F_{t, r}a_{s, t}A_{s, r} - F_{t, r}b'_{s, t}b'_{t, r} - F_{t, r}B'_{s, t}b'_{s, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\(f_{t, r}B'_{s, t}a_{s, r} - f_{t, r}B'_{s, r}a_{s, t} + F_{t, r}a_{s, t}a_{s, r} - F_{t, r}B'_{s, t}B'_{s, r}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\(F_{s, r} + f_{t, r}b'_{s, t}a_{t, r} - f_{t, r}b'_{s, r}A_{r, t} - f_{t, r}B'_{s, r}A_{s, t}\)

 

\( + F_{t, r}A_{s, t}a_{t, r} - F_{t, r}b'_{s, t}B'_{t, r}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{q^{10}r^2st - 3q^8r^2st + 4q^6r^2st - 4q^4r^2st - q^4r^2 + q^4rs + q^4rt - q^4st + 3q^2r^2st - r^2st}{q^4(r - s)(t - r)}\)

\({\mathcal {G}}(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\( \frac{trs^2(q^4 + 1)(q - 1)^3(q + 1)^3}{q^4(-t + s)(r - s)}\)

\({\mathcal {G}}(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\( \frac{t^2rs(q^4 + 1)(q - 1)^3(q + 1)^3}{q^4(t - s)(-t + r)}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t)\)

\( \frac{rsQ(q^8r^2t^2 - q^8rst^2 - q^6r^2s^2t^2 - q^6r^2t^2 + q^6rs^2t + 2q^6rst^2 + 2q^4r^2s^2t^2 - q^6rt - q^4r^2s^2)}{q^{4}(r - s)(t - s)(-t + r)}\)

 

\( +\frac{rsQ(- 3q^4rst^2 - q^2r^2s^2t^2 + q^4rs + q^4t^2 + q^2r^2st + 2q^2rst^2 - q^2s^2t^2 - q^2st - rst^2 + s^2t^2)}{q^{4}(r - s)(t - s)(-t + r)} \)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\( \frac{Q(q^8r^2s^2 - q^8rs^2t - q^6r^2s^2t^2 - q^6r^2s^2 + 2q^6rs^2t + q^6rst^2 + 2q^4r^2s^2t^2 - q^6rs)}{q^{4}(r - s)(-t + s)(-t + r)}\)

 

\(+ \frac{Q(- q^4r^2t^2 - 3q^4rs^2t - q^2r^2s^2t^2 + q^4rt + q^4s^2 + q^2r^2st + 2q^2rs^2t - q^2s^2t^2 - q^2st - rs^2t + s^2t^2)rt}{q^{4}(r - s)(-t + s)(-t + r)}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\( \frac{Q(q^2-1)(q^6rs^2 - q^6rst - q^4rs^2t^2 + q^4rst + q^4st^2 + q^2rs^2t^2 - q^4s - q^2rst - q^2s^2t + q^2t + rst - rt^2)rst}{q^{4}(r - s)(t- s)(-t + r)}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(t) \)

\( \frac{rsQ(q^8rst^2 - q^8s^2t^2 + q^6r^2s^2t^2 - q^6r^2st - 2q^6rst^2 + q^6s^2t^2 - 2q^4r^2s^2t^2+q^6st)}{q^{4}(r - s)(t - s)(-t + r)}\)

 

\( +\frac{rsQ(q^4r^2s^2 + 3q^4rst^2 + q^2r^2s^2t^2 - q^4rs - q^4t^2 + q^2r^2t^2 - q^2rs^2t - 2q^2rst^2 + q^2rt - r^2t^2 + rst^2)}{q^{4}(r - s)(t - s)(-t + r)}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(r){\tilde{\mathcal {G}}}(s) \)

\( \frac{Q(q^8rs^2t - q^8s^2t^2 + q^6r^2s^2t^2 - q^6r^2st - 2q^6rs^2t + q^6s^2t^2 - 2q^4r^2s^2t^2 + q^6st)rt}{q^{4}(r - s)(-t + s)(-t + r)}\)

 

\( \frac{Q(q^4r^2t^2 + 3q^4rs^2t + q^2r^2s^2t^2 - q^4rt - q^4s^2 + q^2r^2s^2 - 2q^2rs^2t - q^2rst^2 + q^2rs - r^2s^2 + rs^2t)rt}{q^{4}(r - s)(-t + s)(-t + r)}\)

\( {\mathcal {W}}^-(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\( \frac{Q(1-q^2)(q^6rst - q^6rt^2 + q^4rs^2t^2 - q^4rst - q^4s^2t - q^2rs^2t^2 + q^4t + q^2rst + q^2st^2 - q^2s + rs^2 - rst)rst}{q^{4}(r - s)(-t + s)(-t + r)}\)

\( {\mathcal {W}}^-(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\( \frac{tsrQ(q^2-1)(q^6rst - q^4rst + q^2rst - q^2s - q^2t + r)}{(-t + r)q^{4}(r - s)}\)

\( {\mathcal {W}}^-(r) {\mathcal {W}}^-(t){\tilde{\mathcal {G}}}(s) \)

\( \frac{rtQ(q^8rs^2t - 2q^6rs^2t + 2q^4rs^2t - q^4rt - q^4s^2 - q^2rs^2t + q^2rs + q^2s^2 + q^2st - s^2)}{q^{4}(t - s)(r - s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{Q(q^8rst^2 - 2q^6rst^2 + 2q^4rst^2 - q^4rs - q^4t^2 - q^2rst^2 + q^2rt + q^2st + q^2t^2 - t^2)rs}{q^{4}(-t + s)(-t + r)}\)

\( {\mathcal {W}}^+(s) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(r) \)

\( \frac{trsQ(q^2-1)(q^6r + q^4rst - q^4s - q^4t - q^2rst + rst)}{(-t + r)q^{4}(r - s)}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(t){\tilde{\mathcal {G}}}(s)\)

\( \frac{rtQ(q^8s^2 + q^6rs^2t - q^6rs - q^6s^2 - q^6st - 2q^4rs^2t + q^4rt + q^4s^2 + 2q^2rs^2t - rs^2t)}{q^{4}(t - s)(r - s)}\)

\( {\mathcal {W}}^+(r) {\mathcal {W}}^+(s){\tilde{\mathcal {G}}}(t) \)

\( \frac{Q(q^8t^2 + q^6rst^2 - q^6rt - q^6st - q^6t^2 - 2q^4rst^2 + q^4rs + q^4t^2 + 2q^2rst^2 - rst^2)rs}{q^{4}(-t + s)(-t + r)}\)

In the above table we abbreviate \(Q=(q^2-q^{-2})^3\).

The overlap ambiguity (78) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} {\mathcal {W}}^+(t) {\mathcal {W}}^+(s) {\mathcal {W}}^-(r). \end{aligned}$$
(79)

We can proceed in two ways. If we evaluate \({\mathcal {W}}^+(t) {\mathcal {W}}^+(s)\) first, then we find that (79) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}A'_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}A'_{r, t} + e_{t, r}a'_{t, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(-e_{s, r}A'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}a'_{r, t} - e_{t, r}a'_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(-e_{s, r}a'_{s, t} - e_{t, r}A'_{r, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}a_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}a_{r, t} + e_{t, r}A_{t, s}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(-e_{s, r}a_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}A_{r, t} - e_{t, r}A_{r, s}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-e_{s, r}A_{s, t} - e_{t, r}a_{r, s}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

1

If we evaluate \( {\mathcal {W}}^+(s) {\mathcal {W}}^-(r)\) first, then we find that (79) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}A'_{r, s} + e_{s, r}a'_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}A'_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\(-e_{t, r}a'_{t, s} - e_{s, r}A'_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}a'_{r, s} - e_{s, r}a'_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\(-e_{t, r}A'_{t, s}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}a_{r, s} + e_{s, r}A_{s, t}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\(e_{s, r}a_{s, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\(-e_{t, r}A_{t, s} - e_{s, r}a_{r, t}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

\(e_{t, r}A_{r, s} - e_{s, r}A_{r, t}\)

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\(-e_{t, r}a_{t, s}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

1

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {G}}(r) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{-q^4ts}{(-t + s)(-t + r)(q^2 + 1)^3}\)

\({\mathcal {G}}(r) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(s)\)

\( \frac{q^4ts}{(-t + s)(-s + r)(q^2 + 1)^3}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r)\)

\( \frac{-q^4ts}{(-t + s)(-s + r)(q^2 + 1)^3}\)

\({\mathcal {G}}(s) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(t)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r)\)

\( \frac{q^4ts}{(-t + s)(-t + r)(q^2 + 1)^3}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{q^4(q^2t - s)}{(q - 1)(q + 1)(q^2 + 1)^3(-t + r)(-t + s)}\)

\({\mathcal {G}}(r) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(s)\)

\( \frac{-(q^2s - t)q^4}{(q - 1)(q + 1)(q^2 + 1)^3(-s + r)(-t + s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r)\)

\( \frac{(q^2s - t)q^4}{(q - 1)(q + 1)(q^2 + 1)^3(-s + r)(-t + s)}\)

\({\mathcal {G}}(s) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(t)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s)\)

0

\({\mathcal {G}}(t) {\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r)\)

\( \frac{-q^4(q^2t - s)}{(q - 1)(q + 1)(q^2 + 1)^3(-t + r)(-t + s)}\)

\({\mathcal {W}}^-(r) {\mathcal {W}}^+(s) {\mathcal {W}}^+(t)\)

1

The overlap ambiguity (79) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} {\tilde{\mathcal {G}}}(t) {\tilde{\mathcal {G}}}(s) {\mathcal {W}}^-(r). \end{aligned}$$
(80)

We can proceed in two ways. If we evaluate \({\tilde{\mathcal {G}}}(t) {\tilde{\mathcal {G}}}(s)\) first, then we find that (80) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{s, r}b_{t, r} + B'_{s, r}A'_{t, r}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{s, r}b_{t, s} + b'_{s, r}A'_{t, s}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{s, r}B_{t, s} + b_{s, r}B_{t, r} + b'_{s, r}a'_{t, s} + B'_{s, r}a'_{t, r}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{s, r}B'_{t, r} + B'_{s, r}a_{t, r}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{s, r}B'_{t, s} + b'_{s, r}a_{t, s}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{s, r}b'_{t, s} + b_{s, r}b'_{t, r} + b'_{s, r}A_{t, s} + B'_{s, r}A_{t, r}\)

If we evaluate \( {\tilde{\mathcal {G}}}(s) {\mathcal {W}}^-(r)\) first, then we find that (80) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, r}b_{s, r} + B'_{t, r}A'_{s, r}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{t, r}B_{s, t} + b_{t, r}B_{s, r} + b'_{t, r}a'_{s, t} + B'_{t, r}a'_{s, r}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, r}b_{s, t} + b'_{t, r}A'_{s, t}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(b_{t, r}B'_{s, r} + B'_{t, r}a_{s, r}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(B_{t, r}b'_{s, t} + b_{t, r}b'_{s, r} + b'_{t, r}A_{s, t} + B'_{t, r}A_{s, r}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(B_{t, r}B'_{s, t} + b'_{t, r}a_{s, t}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{q^6r^2st - 2q^4r^2st - q^4r^2 + q^2r^2st + q^2rs + q^2rt - st}{q^4(s - r)(-t + r)}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{s(q - 1)(q + 1)(q^4s^2t - q^2s^2t - q^2s + t)}{q^4(-s + r)(-t + s)}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{(q - 1)(q + 1)(q^4st^2 - q^2st^2 - q^2t + s)t}{(t - r)q^4(-t + s)}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(\frac{r(q - 1)(q + 1)(q^4st - q^2rs - q^2rt + st)}{q^4(-s + r)(-t + r)}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(\frac{s^2(q - 1)(q + 1)(q^4t - q^2s - q^2t + t)}{q^4(s - r)(-t + s)}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(\frac{(q - 1)(q + 1)(q^4s - q^2s - q^2t + s)t^2}{(-t + r)q^4(-t + s)}\)

The overlap ambiguity (80) is resolvable.

Next we evaluate the overlap ambiguity

$$\begin{aligned} {\tilde{\mathcal {G}}}(t) {\tilde{\mathcal {G}}}(s) {\mathcal {W}}^+(r). \end{aligned}$$
(81)

We can proceed in two ways. If we evaluate \({\tilde{\mathcal {G}}}(t) {\tilde{\mathcal {G}}}(s)\) first, then we find that (81) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{s, r}b_{t, r} + a_{s, r}A'_{t, r}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{s, r}b_{t, s} + A_{s, r}A'_{t, s}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{s, r}B_{t, s} + A'_{s, r}B_{t, r} + A_{s, r}a'_{t, s} + a_{s, r}a'_{t, r}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{s, r}B'_{t, r} + a_{s, r}a_{t, r}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{s, r}B'_{t, s} + A_{s, r}a_{t, s}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{s, r}b'_{t, s} + A'_{s, r}b'_{t, r} + A_{s, r}A_{t, s} + a_{s, r}A_{t, r}\)

If we evaluate \( {\tilde{\mathcal {G}}}(s) {\mathcal {W}}^+(r)\) first, then we find that (81) is equal to a weighted sum with the following terms and coefficients:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, r}b_{s, r} + a_{t, r}A'_{s, r}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{t, r}B_{s, t} + A'_{t, r}B_{s, r} + A_{t, r}a'_{s, t} + a_{t, r}a'_{s, r}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{t, r}b_{s, t} + A_{t, r}A'_{s, t}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\(A'_{t, r}B'_{s, r} + a_{t, r}a_{s, r}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\(a'_{t, r}b'_{s, t} + A'_{t, r}b'_{s, r} + A_{t, r}A_{s, t} + a_{t, r}A_{s, r}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\(a'_{t, r}B'_{s, t} + A_{t, r}a_{s, t}\)

Referring to the previous two tables, for each row the given coefficients are equal and their common value is displayed below:

Term

Coefficient

\({\mathcal {W}}^-(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{r(q - 1)(q + 1)(q^4st - q^2rs - q^2rt + st)}{(s - r)(-t + r)q^2}\)

\({\mathcal {W}}^-(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\( \frac{s^2(q - 1)(q + 1)(q^4t - q^2s - q^2t + t)}{(s - r)(t - s)q^2}\)

\({\mathcal {W}}^-(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\( \frac{(q - 1)(q + 1)(q^4s - q^2s - q^2t + s)t^2}{(t - r)q^2(-t + s)}\)

\({\mathcal {W}}^+(r) {\tilde{\mathcal {G}}}(s) {\tilde{\mathcal {G}}}(t)\)

\( \frac{q^6st - q^4r^2st - q^4rs - q^4rt + 2q^2r^2st + q^2r^2 - r^2st}{(s - r)(t - r)q^2}\)

\({\mathcal {W}}^+(s) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(t)\)

\( \frac{s(q - 1)(q + 1)(q^4t - q^2s^2t - q^2s + s^2t)}{(s - r)(-t + s)q^2}\)

\({\mathcal {W}}^+(t) {\tilde{\mathcal {G}}}(r) {\tilde{\mathcal {G}}}(s)\)

\( \frac{(q - 1)(q + 1)(q^4s - q^2st^2 - q^2t + st^2)t}{(t - r)q^2(t - s)}\)

The overlap ambiguity (81) is resolvable.

We have shown that the overlap ambiguities of type (ii) are resolvable.

The overlap ambiguities of type (iii) are obtained from the overlap ambiguities of type (ii) by applying the antiautomorphism \(\dagger \) or \(\sigma \dagger \). Consequently they are resolvable.

It is transparent that the overlap ambiguities of type (iv) are resolvable.

We have shown that all the overlap ambiguities are resolvable.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terwilliger, P. The Alternating Central Extension of the q-Onsager Algebra. Commun. Math. Phys. 387, 1771–1819 (2021). https://doi.org/10.1007/s00220-021-04171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04171-2

Navigation