Skip to main content
Log in

Whittaker Modules for Classical Lie Superalgebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We classify simple Whittaker modules for classical Lie superalgebras in terms of their parabolic decompositions. We establish a type of Miličić–Soergel equivalence of a category of Whittaker modules and a category of Harish–Chandra bimodules. For classical Lie superalgebras of type I, we reduce the problem of composition factors of standard Whittaker modules to that of Verma modules in their BGG categories \({\mathcal {O}}\). As a consequence, the composition series of standard Whittaker modules over the general linear Lie superalgebras \(\mathfrak {gl}(m|n)\) and the ortho-symplectic Lie superalgebras \(\mathfrak {osp}(2|2n)\) can be computed via the Kazhdan–Lusztig combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, J.C., Backelin, E.: Projective and Whittaker functors on category \({\cal{O}}\). J. Algebra 574, 154–171 (2021). https://doi.org/10.1016/j.jalgebra.2021.01.024

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović, D., Lü, R., Zhao, K.: Whittaker modules for the affine Lie algebra \(A_1^{(1)}\). Adv. Math. 289, 438–479 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Backelin, E.: Representation of the category \({\cal{O}}\) in Whittaker categories. Int. Math. Res. Notices 4, 153–172 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bao, H.: Kazhdan–Lusztig theory of super type D and quantum symmetric pairs. Represent. Theory 21, 247–276 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Brundan, J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{gl}(m|n)\). J. Am. Math. Soc. 16, 185–231 (2003)

    MATH  Google Scholar 

  6. Brundan, J.: Representations of the general linear Lie superalgebra in the BGG category \({mathcal O }\). In: Mason, G., et al. (eds.) Developments and Retrospectives in Lie Theory: Algebraic Methods. Developments in Mathematics, vol. 38, pp. 71–98. Springer, New York (2014)

    Google Scholar 

  7. Brown, A.: Arakawa–Suzuki functors for Whittaker modules. J. Algebra 538, 261–289 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Beilinson, A., Bernstein, J.: Localisation de g-modules, Sér. I Math., 292, Paris: C. R. Acad. Sci. 15–18 (1981)

  9. Bell, A., Farnsteiner, R.: On the theory of Frobenius extensions and its application to Lie superalgebras. Trans. Am. Math. Soc. 335, 407–424 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Bernstein, J.N., Gelfand, S.I.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Brundan, J., Goodwin, S.M.: Whittaker coinvariants for \(GL(m|n)\). Adv. Math. 347, 273–339 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Brylinski, J.L., Kashiwara, M.: Kazhdan–Lusztig conjecture and holonomic systems. Invent. Math. 64, 387–410 (1981). https://doi.org/10.1007/BF01389272

  13. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215(7), 1552–1568 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Benkart, G., Ondrus, M.: Whittaker modules for generalized Weyl algebras. Represent. Theory 13, 141–164 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Brundan, J., Stroppel, C.: Semi-infinite highest weight categories. To appear in Memoirs Amer. Math. Soc.. Preprint. arxiv:1808.08022

  16. Bao, H., Wang, W.: A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs, Asterisque 402, (2018), vii+134pp

  17. Bagci, I., Christodoulopoulou, K., Wiesner, E.: Whittaker categories and Whittaker modules for Lie superalgebras. Commun. Algebra 42(11), 4932–4947 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Bernštein, I., Gel’fand, I., Gel’fand, S.: Differential operators on the base affine space and a study of \({g}\)-modules. In: Lie Groups and Their Representations (Proceedings of Summer School, Bolyai Janos Mathematical Society, Budapest, 1971), pp. 21–64. Halsted, New York (1975)

  19. Bernštein, I., Gel’fand, I., Gel’fand, S.: A certain category of \({\mathfrak{g}}\)-modules. Funkcional. Anal. i Priložen. 10(2), 1–8 (1976)

  20. Christodoulopoulou, K.: Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J. Algebra 320, 2871–2890 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Coulembier, K.: Gorenstein homological algebra for RNGS and Lie superalgebras. Preprint https://arxiv.org/pdf/1707.05040.pdf

  22. Chen, C.-W., Coulembier, K.: The primitive spectrum and category \({\cal{O}}\) for the periplectic Lie superalgebra. Canad. J. Math. 72(3), 625–655 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Chen, C.-W., Peng, Y.-N.: Parabolic category \({\cal{O}}^{p\mathit{} for periplectic Lie superalgebras pe}(n)\). Preprint https://arxiv.org/pdf/2002.10311.pdf

  24. Chen, C.-W., Mazorchuk, V.: Simple supermodules over Lie superalgebras. Trans. Am. Math. Soc. 374, 899–921 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Coulembier, K., Mazorchuk, V.: Extension fullness of the categories of Gelfand–Zeitlin and Whittaker modules. SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper No. 016

  26. Coulembier, K., Mazorchuk, V.: Primitive ideals, twisting functors and star actions for classical Lie superalgebras. J. Reine Ang. Math. 718, 207–253 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Cheng, S.-J., Wang, W.: Brundan–Kazhdan–Lusztig and super duality conjectures. Publ. Res. Inst. Math. Sci. 44(4), 1219–1272 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Cheng, S.-J., Wang, W.: Dualities and representations of Lie superalgebras. Graduate Studies in Mathematics, vol. 144. American Mathematical Society, Providence, RI (2012)

    Google Scholar 

  29. Cheng, S.-J., Wang, W.: Character formulae in category O for exceptional Lie superalgebras \(D(2|1;\zeta )\). Transform. Groups 24(3), 781–821 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Cheng, S.-J., Wang, W.: Character formulae in category O for exceptional Lie superalgebra \(G(3)\). To appear in Kyoto J. Math.. Preprint arxiv:1804.06951

  31. Chen, C.-W., Cheng, S.-J., Coulembier, K.: Tilting modules for classical Lie superalgebras. J. Lond. Math. Soc. 2(103), 870–900 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Chen, C.-W., Cheng, S.-J., Luo, Li: Blocks and characters of \(G(3)\)-modules of non-integral weights. Preprint arxiv:2012.00998

  33. Chen, C.-W., Coulembier, K., Mazorchuk, V.: Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras. Math. Z. 297, 255–281 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Chen, H., Dai, X., Hong, Y.: A class of super Heisenberg-Virasoro algebras. Preprint. arxiv:2009.06853

  35. Cheng, S.-J., Lam, N., Wang, W.: Super duality and irreducible characters of ortho-symplectic Lie superalgebras. Invent. Math. 183, 189–224 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Cheng, S.-J., Lam, N., Wang, W.: Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras. Duke Math. J. 110, 617–695 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Cheng, S.-J., Mazorchuk, V., Wang, W.: Equivalence of blocks for the general linear Lie superalgebra. Lett. Math. Phys. 103, 1313–1327 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  38. Cline, E., Parshall, B., Scott, L.: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Dixmier, J.: Enveloping Algebras. Graduate Studies in Mathematics, vol. 11. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  40. Dimitrov, I., Mathieu, O., Penkov, I.: On the structure of weight modules. Trans. Am. Math. Soc. 352(6), 2857–2869 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Gorelik, M.: On the ghost centre of Lie superalgebra. Ann. Inst. Fourier (Grenoble) 50(6), 1745–1764 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Gorelik, M.: Strongly typical representations of the basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 167–184 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Gorelik, M.: Annihilation theorem and separation theorem for basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 113–165 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Guo, X., Lu, R., Zhao, K.: Irreducible modules over the Virasoro algebra. Doc. Math. 16, 709–721 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Greenstein, J., Mazorchuk, V.: Koszul duality for semidirect products and generalized Takiff algebras. Algebr. Represent. Theory 20(3), 675–694 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Humphreys, J.: Representations of semisimple Lie algebras in the BGG category \({mathcal O }\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  47. Joseph, A.: Kostant’s problem, Goldie rank and the Gelfand–Kirillov conjecture. Invent. Math. 56(3), 191–213 (1980)

  48. Kac, V.: Lie superalgebras. Adv. Math. 16, 8–96 (1977)

    MATH  Google Scholar 

  49. Kac, V.: Representations of classical Lie superalgebras. In: Differential geometrical methods in mathematical physics, II (Proceedings of Conference, University of Bonn, Bonn, 1997: Lecture Notes in Math., vol. 676, pp , 597–626. Springer (1978)

  50. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48(2), 101–184 (1978)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    MathSciNet  MATH  ADS  Google Scholar 

  52. Khomenko, O., Mazorchuk, V.: Structure of modules induced from simple modules with minimal annihilator. Can. J. Math. 56(2), 293–309 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Lu, R., Zhao, K.: Generalized oscillator representations of the twisted Heisenberg–Virasoro algebra. Algebr. Represent. Theory 23(4), 1417–1442 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Liu, D., Wu, Y., Zhu, L.: Whittaker modules for the twisted Heisenberg–Virasoro algebra. J. Math. Phys. 51(023524), 12p (2010)

    MathSciNet  MATH  Google Scholar 

  55. Mazorchuk, V.: Parabolic Category \({mathcal O }\) for classical. Lie superalgebras Advances in Lie Superalgebras, pp. 149–166. Springer, New York (2014)

    MATH  Google Scholar 

  56. McDowell, E.: On modules induced from Whittaker modules. J. Algebra 96, 161–177 (1985)

    MathSciNet  MATH  Google Scholar 

  57. McDowell, E.: A module induced from a Whittaker module. Proc. Am. Math. Soc. 118(2), 349–354 (1993)

    MathSciNet  MATH  Google Scholar 

  58. Musson, I.M.: A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra. Adv. Math. 91, 252–268 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Musson, I.: Lie superalgebras and enveloping algebras. Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence, RI (2012)

    MATH  Google Scholar 

  60. Mazorchuk, V., Miemietz, V.: Serre functors for Lie algebras and superalgebras. Ann. linst. Fourier 62(1), 47–75 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Mazorchuk, V., Stroppel, C.: Categorification of (induced) cell modules and the rough structure of generalised Verma modules. Adv. Math. 219(4), 1363–1426 (2008)

    MathSciNet  MATH  Google Scholar 

  62. Miličić, D., Soergel, W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72(4), 503–520 (1997). https://doi.org/10.1007/s000140050031

    Article  MathSciNet  MATH  Google Scholar 

  63. The nondegenerate case: D. Miličić, W. Soergel. l. Twisted Harish–Chandra sheaves and Whittaker modules. In: Developments and Retrospectives in Localization Lie Theory: Geometric and Analytic Methods, vol. 37, pp. 183–196 (2014). https://doi.org/10.1007/978-3-319-09934-7_7

  64. Ondrus, M.: Whittaker modules for \(U_q({\mathfrak{sl}}_2)\). J. Algebra 289, 192–213 (2005)

    MathSciNet  MATH  Google Scholar 

  65. Ondrus, M., Wiesner, E.: Whittaker modules for the Virasoro algebra. J. Algebra Appl. 8, 363–377 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Romanov, A.: A Kazhdan–Lusztig Algorithm for Whittaker Modules. Algebr. Represent. Theor. 24, 81–133 (2021)

    MathSciNet  MATH  Google Scholar 

  67. Sevostyanov, A.: Quantum deformation of Whittaker modules and the Toda lattice. Duke Math. J. 105, 211–238 (2000)

    MathSciNet  MATH  Google Scholar 

  68. Serganova, V.: Quasireductive supergroups. New developments in Lie theory and its applications, Contemporary Mathematics, vol. 544, pp 141–159. American Mathematical Society, Providence (2011)

  69. Serganova, V.: On representations of the Lie superalgebra \({\mathfrak{p}}(n)\). J. Algebra 258(2), 615–630 (2002)

    MathSciNet  MATH  Google Scholar 

  70. Soergel, W.: Kategorie \({\cal{O}}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MathSciNet  MATH  Google Scholar 

  71. Wang, B.: Whittaker modules for graded Lie algebras. Algebr. Represent. Theory 1–12 (2010)

  72. Xiao, H.: On finite dimensional representations of basic \(W\)-superalgebras. Preprint. arxiv:2101.07345

  73. Zeng, Y., Shu, B.: Finite \(W\)-superalgebras for basic Lie superalgebras. J. Algebra 438, 188–234 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by a MoST grant, and he would like to thank Shun-Jen Cheng, Kevin Coulembier, Volodymyr Mazorchuk and Weiqiang Wang for interesting discussions and helpful comments. He is grateful to the referees for numerous comments and suggestions, which have improved the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Whi Chen.

Additional information

Communicated by H-T.Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Character formulae of \(\mathfrak {gl}(2|1)\)

The goal of this subsection is to give the list of character formulae of projective covers in the principal block of \({\mathcal {O}}\) of \({\mathfrak {g}}:=\mathfrak {gl}(2|1)\) computed in [27]. With the canonical isomorphic \(\mathfrak {gl}(1|2)\cong \mathfrak {gl}(2|1)\) and the BGG reciprocity, the composition factors of Verma modules over \(\mathfrak {gl}(1|2)\) can be read off from character formulae in this subsection.

We choose the Borel subalgebra \({\mathfrak {b}} :=\bigoplus _{1\le i\le j\le 3}{\mathbb {C}}E_{ij}\) and the standard Cartan subalgebra \({\mathfrak {h}}^*:=\oplus _{i=1}^3{\mathbb {C}}E_{ii}\). Set \(\rho \in {\mathfrak {h}}^*\) to be the corresponding Weyl vector. For \(\mu \in {\mathfrak {h}}^*\), we let \(M^{{\mathfrak {a}}}(\mu )\) denote Verma module over \(\mathfrak {gl}(2|1)\) with highest weight \(\mu -\rho \). Also, we let \(P^{{\mathfrak {a}}}(\mu )\) denote the projective cover of the simple quotient of \(M^{{\mathfrak {a}}}(\mu )\). For any \(a,b,c\in {\mathbb {C}}\), we set \((a|b,c):= a\epsilon _1+b\epsilon _2+c\epsilon _3\). We adopt the notation \(P^{{\mathfrak {a}}}(\lambda ) = \sum _{\mu \in {\mathfrak {h}}^*}(P^{{\mathfrak {a}}}(\lambda ): M^{{\mathfrak {a}}}(\mu ))M^{{\mathfrak {a}}}(\mu )\) to record the Verma flag structure \(P^{{\mathfrak {a}}}(\lambda ).\)

Lemma 36

[27, Section 9]. We have the following character formulae:

$$\begin{aligned}&(1). ~P^{{\mathfrak {a}}}(0,0|0) = M^{{\mathfrak {a}}}(0,0|0)+M^{\mathfrak a}(0,1|-1)+M^{{\mathfrak {a}}}(1,0|-1). \\&(2). ~P^{{\mathfrak {a}}}(0,-1|1) = M^{\mathfrak a}(0,-1|1)+M^{{\mathfrak {a}}}(0,0|0)+M^{{\mathfrak {a}}}(1,0|-1).\\&(3). ~P^{{\mathfrak {a}}}(-1,0|1) = M^{\mathfrak a}(-1,0|1)+M^{{\mathfrak {a}}}(0,-1|1)+M^{{\mathfrak {a}}}(00|0).\\&(4). ~P^{{\mathfrak {a}}}(0,-k|k) = M^{\mathfrak a}(0,-k|k)+M^{{\mathfrak {a}}}(0,-(k-1)|(k-1)),~\text {for }k> 1.\\&(5). ~P^{{\mathfrak {a}}}(-k,0|k) = M^{\mathfrak a}(-k,0|k)+M^{{\mathfrak {a}}}(0,-k|k) +M^{\mathfrak a}(-(k-1),0|(k-1))+\\ {}&M^{{\mathfrak {a}}}(0,-(k-1)|(k-1)),~\text {for }k> 1.\\&(6). ~P^{{\mathfrak {a}}}(k,0|-k) = M^{\mathfrak a}(k,0|-k)+M^{{\mathfrak {a}}}(k+1,0|-(k+1)),~\text {for }k\ge 1.\\&(7). ~P^{{\mathfrak {a}}}(0,k|-k) = M^{\mathfrak a}(0,k|-k)+M^{{\mathfrak {a}}}(k,0|-k)+M^{\mathfrak a}(0,k+1|-(k+1))\\&\qquad +M^{{\mathfrak {a}}}(k+1,0|-(k+1)),~\text {for }k\ge 1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CW. Whittaker Modules for Classical Lie Superalgebras. Commun. Math. Phys. 388, 351–383 (2021). https://doi.org/10.1007/s00220-021-04159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04159-y

Navigation