Skip to main content
Log in

Reducible Fermi Surface for Multi-layer Quantum Graphs Including Stacked Graphene

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct two types of multi-layer quantum graphs (Schrödinger operators on metric graphs) for which the dispersion function of wave vector and energy is proved to be a polynomial in the dispersion function of the single layer. This leads to the reducibility of the algebraic Fermi surface, at any energy, into several components. Each component contributes a set of bands to the spectrum of the graph operator. When the layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-layer structure. One of the tools we introduce is a surgery-type calculus for obtaining the dispersion function for a periodic quantum graph by joining two graphs together. Reducibility of the Fermi surface allows for the construction of local defects that engender bound states at energies embedded in the radiation continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abergel, D.S.L., Apalkov, V., Berashevich, J., Ziegler, K., Chakraborty, T.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010)

  2. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  3. Amovilli, C., Leys, F.E., March, N.H.: Electronic energy spectrum of two-dimensional solids and a chain of C atoms from a quantum network model. J. Math. Chem. 36, 93–112 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Ando, K., Isozaki, H., Korotyaev, E., Morioka, H.: Inverse scattering on the quantum graph for graphene (2021). arXiv:2102.05217

  5. Bao, C., Yao, W., Wang, E., Chen, C., Avila, J., Asensio, M.C., Zhou, S.: Stacking dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy. Nano Lett. 17(3), 564–1568 (2017)

    Google Scholar 

  6. Bättig, D.: A toroidal compactification of the two-dimensional Bloch-manifold. Ph.D. thesis, ETH-ürich (1988)

  7. Bättig, D.: A toroidal compactification of the Fermi surface for the discrete Schrödinger operator. Comment. Math. Helvetici 67, 1–16 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Bättig, D., Knörrer, H., Trubowitz, E.: A directional compactification of the complex Fermi surface. Compositio Math. 79(2), 205–229 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Becker, S., Han, R., Jitomirskaya, S.: Cantor spectrum of graphene in magnetic fields. Inventiones Mathematicae 218(3), 979–1041 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Berkolaiko, G., Comech, A.: Symmetry and Dirac points in graphene spectrum. J. Spect. Theor. 8, 1099–1147 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Surgery principles for the spectral analysis of quantum graphs. Trans. Am. Math. Soc. 372, 5153–5197 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, volume 186 of Mathematical Surveys and Monographs. AMS (2013)

  13. Brown, B.M., Schmidt, K.M., Shipman, S.P., Wood, I.: The inverse problem for a spectral asymmetry function of the Schrödinger operator on a finite interval (2020). arXiv:2009.03483 [math.SP]

  14. Campos, L.C., Taychatanapat, T., Serbyn, M., Surakitbovorn, K., Watanabe, K., Taniguchi, T., Abanin, D.A., Jarillo-Herrero, P.: Landau level splittings, phase transitions, and nonuniform charge distribution in trilayer graphene. Phys. Rev. Lett. 117, 066601 (2016)

    ADS  Google Scholar 

  15. Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J.G., Geim, A.K., Castro Neto, A.H.: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

  16. The electronic properties of graphene: Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  17. Cheon, T., Exner, P., Turek, O.: Approximation of a general singular vertex coupling in quantum graphs. Ann. Phys. 325(3), 548–578 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  18. Coulson, C.A.: Note on the applicability of the free-electron network model to metals. Proc. Phys. Soc. Sect. A 67(7), 608–614 (1954)

    MATH  ADS  Google Scholar 

  19. da Rocha, V.L.: Multilayer Graphene through quantum periodic graphs: Dirac cones. Ph.D. thesis, Universidade Federal de São Carlos (2020)

  20. de Oliveira, C.R., Rocha, V.L.: Dirac cones for bi- and trilayer Bernal-stacked graphene in a quantum graph model (2020). arXiv:2011.08658

  21. de Oliveira, C.R., Rocha, V.L.: Dirac cones for graph models of multilayer AA-stacked graphene sheets. Z. Naturforsch. 76(4), 371–384 (2021)

    ADS  Google Scholar 

  22. Do, N.T., Kuchment, P.: Quantum graph spectra of a graphyne structure. Nanoscale Syst. MMTA 2, 107–123 (2013)

    MATH  Google Scholar 

  23. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Acad. Press, Edinburgh-London (1973)

  24. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplayaev, A. (eds.): Analysis on Graphs and its Applications, vol. 77 (2008)

  25. Exner, P., Post, O.: Convergence of spectra of graph-like thin manifolds. J. Geom. Phys. 54(1), 77–115 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  26. Exner, P., Post, O.: Approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds. J. Phys. A: Math. Theor. 42(41), 415305 (2009)

    MATH  Google Scholar 

  27. Fan, S., Joannopoulos, J.D.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65(23), 235112–1–8 (2002)

  28. Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes. IEEE J. Quantum Electron. 36(10), 1123–1130 (2000)

    ADS  Google Scholar 

  29. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866–1878 (1961)

    MATH  ADS  Google Scholar 

  30. Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. AMS 25(4), 1169–1220 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Gieseker, D., Knörrer, H., Trubowitz, E.: The Geometry of Algebraic Fermi Curves. Academic Press, Boston (1993)

    MATH  Google Scholar 

  32. Hsu, C.W., Zhen, B., Chua, S.-L., Johnson, S.G., Joannopoulos, J.D., Soljacic, M.: Bloch surface eigenstates within the radiation continuum. Light: Science App. 2, e84 (2013). https://doi.org/10.1038/Isa.2013.40

  33. Kim, K.S., Walter, A.L., Moreschini, L., Seyller, T., Horn, K., Rotenberg, E., Bostwick, A.: Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 12(10), 887–892 (2013)

    ADS  Google Scholar 

  34. Korotyaev, E., Lobanov, I.: Schrödinger operators on zigzag nanotubes. Ann. Henri Poincaré 275(3), 805–826 (2007)

    MATH  Google Scholar 

  35. Korotyaev, E., Lobanov, I.: Zigzag periodic nanotube in magnetic field. Lett. Math. Phys. 83, 83–95 (2008)

    MathSciNet  ADS  Google Scholar 

  36. Kuchment, P.: Graph models for waves in thin structures. Waves Random Media 12(4), R1–R24 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Kuchment, P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53(3), 343–414 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Kuchment, P., Post, O.: On the spectra of carbon nano-structures. Comm. Math. Phys. 275, 805–826 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  39. Kuchment, P., Vainberg, B.: On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials. Commun. Part. Differ. Equat. 25(9–10), 1809–1826 (2000)

    MATH  Google Scholar 

  40. Kuchment, P., Vainberg, B.: On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators. Commun. Math. Phys. 268(3), 673–686 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  41. Kuchment, P., Zhao, J.: Analyticity of the spectrum and Dirichlet-to-Neumann operator technique for quantum graphs. J. Math. Phys. 60(093502) (2019)

  42. Latil, S., Henrard, L.: Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006)

    ADS  Google Scholar 

  43. Leys, F., Amovilli, C., March, N.: Topology, connectivity, and electronic structure of C and B cages and the corresponding nanotubes. J. Chem. Inf. Comput. Sci. 44(1), 122–135 (2004)

    Google Scholar 

  44. Li, W., Shipman, S.P.: Irreducibility of the Fermi surface for planar periodic graph operators. Lett. Math, Phys (2020)

    MATH  Google Scholar 

  45. Liu, H., Jiang, H., Xie, X.C.: Intrinsic superconductivity in ABA-stacked trilayer graphene. AIP Adv. 2, 041405 (2012)

  46. Liu, W.: Irreducibility of the Fermi variety for discrete periodic Schrodinger operators and embedded eigenvalues (2020). arXiv:2006.04733

  47. McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)

    ADS  Google Scholar 

  48. McCann, E., Abergel, D.S.L., Fal’ko, V.I.: The low energy electronic band structure of bilayer graphene. Eur. Phys. J. Special Topics 148, 91–103 (2007)

    ADS  Google Scholar 

  49. McCann, E., Abergel, D.S.L., Fal’ko, V.I.: The low energy electronic band structure of bilayer graphene. Eur. Phys. J. Special Top. 148(1), 91–103 (2007)

    ADS  Google Scholar 

  50. Niikuni, H.: Spectral band structure of periodic Schrödinger operators with two potentials on the degenerate zigzag nanotube. J. Appl. Math. Comput. 50, 453–482 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Partoens, B., Peeters, F.M.: From graphene to graphite: Electronic structure around the \(K\) point. Phys. Rev. B 74, 075404 (2006)

    Google Scholar 

  52. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics. Academic Press (1987)

  53. Rozhkov, A.V., Sboychakov, A.O., Rakhmanov, A.L., Nori, F.: Single-electron gap in the spectrum of twisted bilayer graphene. Phys. Rev. B 95, 045119 (2017)

    ADS  Google Scholar 

  54. Rozhkova, A.V., Sboychakova, A.O., Rakhmanova, A.L., Nori, F.: Electronic properties of graphene-based bilayer systems. Phys. Rep. 648, 1–104 (2016)

    MathSciNet  ADS  Google Scholar 

  55. Ruedenberg, K., Scherr, C.W.: Free-electron network model for conjugated systems. i. Theory. J. Chem. Phys. 21, 1565–1581 (1953)

  56. Sboychakov, A.O., Rakhmanov, A.L., Rozhkov, A.V., Nori, F.: Electronic spectrum of twisted bilayer graphene. Phys. Rev. B 92, 075402 (2015)

    ADS  Google Scholar 

  57. Schenker, J.H., Aizenman, M.: The creation of spectral gaps by graph decoration. Lett. Math. Phys. 53(3), 253–262 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Shipman, S.P.: Resonant Scattering by Open Periodic Waveguides, volume 1 of E-Book, Progress in Computational Physics (Ch. 2). Bentham Science Publishers (2010)

  59. Shipman, S.P.: Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators. Commun. Math. Phys. 332(2), 605–626 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  60. Shipman, S.P.: Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators. J. Spectr. Theory (2019). https://doi.org/10.4171/JST/285

    Article  MATH  Google Scholar 

  61. Shipman, S.P., Tillay, J.: Spectra of semi-infinite quantum graph tubes. Lett. Math. Phys. 106, 1317–1343 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  62. Shipman, S.P., Venakides, S.: Resonant transmission near non-robust periodic slab modes. Phys. Rev. E 71(1), 026611–1–10 (2005)

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1814902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Shipman.

Additional information

Communicated by A. Giuliani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Moving the Poles of the Dispersion Function

Appendix: Moving the Poles of the Dispersion Function

This appendix proves Proposition 1 in Sect. 2.1. The proof is based on the dotted-graph technique [41]. First consider the simple case of a quantum graph where the underlying graph E consists of two vertices and the edge \(e\{v_1,v_2\}\) between them, identified with the x-interval [0, L]. With the operator \(-d^2/dx^2-q(x)\) and Robin parameters \(\alpha _1\) at \(v_1 (x=0)\) and \(\alpha _2\) at \(v_2 (x=L)\), we obtain a quantum graph (EQ). Let \(\dot{E}\) be the graph obtained by placing an additional vertex v at the point of e corresponding to \(x=\ell \in \;]0,L[\); thus \(\dot{E}\) consists of three vertices and two edges \(e_1\{v_1,v\}\) and \(e_2\{v,v_2\}\), with \(e_1\) identified with \([0,\ell ]\) and \(e_2\) identified with \([\ell ,L]\).

Restricting the potential q to \(e_1\) and \(e_2\) and imposing the Neumann condition at v yields a quantum graph \((\dot{E},\dot{Q})\). The Neumann condition guarantees continuity of value and derivative across v, and therefore (EQ) and \((\dot{E},\dot{Q})\) are essentially identical quantum graphs.

Denote the transfer matrices for \(-d^2/dx^2 + q(x)\) on [0, L], on \([0,\ell ]\), and on \([\ell ,L]\) by

(8.1)

Considering \((\dot{E},\dot{Q})\) as one period of a d-periodic disconnected graph, its dispersion function is a meromorphic function of \(\lambda \) alone, as its discrete reduction \(\hat{\dot{Q}}(z,\lambda )\) is independent of z. When Robin conditions are imposed at both endpoints, denote this function by \(\dot{h}^\text {RR}(\lambda ) = \det \hat{\dot{Q}}(z,\lambda )\),

$$\begin{aligned} \dot{h}^\text {RR}(\lambda ) \;=\; \det \left[ \begin{array}{ccc} -\frac{c_1(\lambda )}{s_1(\lambda )}-\alpha _1 &{} \frac{1}{s_1(\lambda )} &{} 0\\ \\ \frac{1}{s_1(\lambda )} &{} -\frac{s_1'(\lambda )}{s_1(\lambda )}-\frac{c_2(\lambda )}{s_2(\lambda )} &{} \frac{1}{s_2(\lambda )}\\ \\ 0 &{} \frac{1}{s_2(\lambda )} &{} -\frac{s_2'(\lambda )}{s_2(\lambda )}-\alpha _2 \end{array} \right] . \end{aligned}$$
(8.2)

When the homogeneous Dirichlet condition is imposed at either end (not both ends) of [0, L], with a Robin condition at the other end, one obtains

$$\begin{aligned} \dot{h}^\text {DR}(\lambda )= & {} \det \left[ \begin{array}{cc} -\frac{s_1'(\lambda )}{s_1(\lambda )}-\frac{c_2(\lambda )}{s_2(\lambda )} &{} \frac{1}{s_2(\lambda )}\\ \\ \frac{1}{s_2(\lambda )} &{} -\frac{s_2'(\lambda )}{s_2(\lambda )}-\alpha _2 \end{array} \right] , \nonumber \\ \dot{h}^\text {RD}(\lambda )= & {} \det \left[ \begin{array}{cc} -\frac{c_1(\lambda )}{s_1(\lambda )}-\alpha _1 &{} \frac{1}{s_1(\lambda )} \\ \\ \frac{1}{s_1(\lambda )} &{} -\frac{s_1'(\lambda )}{s_1(\lambda )}-\frac{c_2(\lambda )}{s_2(\lambda )}\end{array} \right] , \end{aligned}$$
(8.3)

and  \(\dot{h}^\text {DD}(\lambda ) = -\frac{s_1'(\lambda )}{s_1(\lambda )}-\frac{c_2(\lambda )}{s_2(\lambda )}\) when the Dirichlet condition is imposed at both ends. Using the relation \(T = T_2 T_1\), one computes that

$$\begin{aligned}&\dot{h}^\text {RR}= -\frac{c'+\alpha _1 s' + \alpha _2 c + \alpha _1\alpha _2 s}{s_1s_2}, \quad \dot{h}^\text {DR}= \frac{s'+\alpha _2 s}{s_1s_2},\nonumber \\&\dot{h}^\text {RD}= \frac{c + \alpha _1 s}{s_1s_2}, \quad \dot{h}^\text {DD}= -\frac{s}{s_1s_2}. \end{aligned}$$
(8.4)

For the un-dotted quantum graph (EQ), one obtains these same expressions except with the denominator \(s_1(\lambda )s_2(\lambda )\) replaced by \(s(\lambda )\),

$$\begin{aligned}&h^\text {RR}= -\frac{c'+\alpha _1 s' + \alpha _2 c + \alpha _1\alpha _2 s}{s}, \quad h^\text {DR}= \frac{s'+\alpha _2 s}{s},\nonumber \\&h^\text {RD}= \frac{c + \alpha _1 s}{s}, \quad h^\text {DD}= -\frac{s}{s}. \end{aligned}$$
(8.5)

Observe that, given \(\lambda _0\), one can guarantee that \(s_1(\lambda _0)s_2(\lambda _0)\not =0\) by choosing the point \(\ell \) not to be a root of any Dirichlet eigenfunction of \(-d^2/dx^2+q(x)\) for \(\lambda _0\) on [0, L].

These calculations show that the numerators in the expressions above contain the essential spectral information. In fact this is true of periodic quantum graphs in general. To go from the dispersion function for a quantum graph \((\Gamma ,A)\) to the dispersion function for a dotted version \(({\dot{\Gamma }},\dot{A})\), one simply multiplies by a factor of the form \(s(\lambda )/(s_1(\lambda )s_2(\lambda ))\) for each dotted edge.

Proof of Proposition 1

If \(v_1\) and \(v_2\) are not in the same \({\mathbb {Z}}^d\) orbit, we can assume that they both are in the vertex set \({\mathcal {V}}_0\) of the fundamental domain chosen for constructing \({\hat{A}}(z,\lambda )\), since \(D(z,\lambda )\) is independent of that choice. Denote by \({\hat{A}}(z,\lambda )\) and \(\hat{\dot{A}}(z,\lambda )\) the discrete reductions at energy \(\lambda \) of the quantum graphs \((\Gamma ,A)\) and \(({\dot{\Gamma }},\dot{A})\). Index the rows and columns of \({\hat{A}}(z,\lambda )\) so that the first two correspond to \(v_1\) and \(v_2\); then augment it with a \(0^\text {th}\) column and a \(0^\text {th}\) row consisting of a 1 in the leading entry and zeroes elsewhere. Call this matrix \(\hat{{\tilde{A}}}(z,\lambda )\).

The matrix \(\hat{{\tilde{A}}}(z,\lambda )\) has the block form

(8.6)

in which

$$\begin{aligned} \Sigma = \left[ \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} -cs^{-1} &{} s^{-1} \\ 0 &{} s^{-1} &{} -s's^{-1} \end{array} \right] , \end{aligned}$$
(8.7)

A and B have all zeroes in the first row, and A and C have all zeroes in the first column. The variable z does not appear in \(\Sigma \) because v and w are both in the chosen fundamental domain. The matrix \(\hat{\dot{A}}(z,\lambda )\) is obtained by replacing \(\Sigma \) by a matrix \({\dot{\Sigma }}\), where \({\dot{\Sigma }}\) is obtained from \(h^\text {RR}(\lambda )\) (Eq. 8.2) with \(\alpha _1 = \alpha _2 = 0\) by switching the first two rows and the first two columns (that is, switching the order of the vertices from \((v_1,v,v_2)\) to \((v,v_1,v_2)\)), to obtain

$$\begin{aligned} {\dot{\Sigma }} = \left[ \begin{array}{ccc} -s\,s_1^{-1}s_2^{-1} &{} s_1^{-1} &{} s_2^{-1} \\ s_1^{-1} &{} -c_1s_1^{-1} &{} 0 \\ s_2^{-1} &{} 0 &{} -s_2's_2^{-1} \end{array} \right] , \end{aligned}$$
(8.8)

where the relation \(s=s_1c_2+s_1's_2\) is used in the upper left entry.

The \(3 \times 3\) matrix \(K = A-BD^{-1}C\) has all zeroes in its first row and first column. A computation using the relation \(T=T_2T_1\) yields the key relation

$$\begin{aligned} s_1(\lambda )s_2(\lambda )\,\det ({\dot{\Sigma }}+K) \;=\; s(\lambda )\, \det (\Sigma +K), \end{aligned}$$
(8.9)

which holds for any matrix K whose first column and and first row vanish. Using this together with

$$\begin{aligned} \det \hat{\dot{A}} = \det D\,\det ({\dot{\Sigma }} + K), \qquad \det {\hat{A}} = \det \hat{{\tilde{A}}} = \det D \det (\Sigma +K) \end{aligned}$$
(8.10)

yields the statement of the theorem.

If \(v_2=gv_1\) for some \(g\in {\mathbb {Z}}^d\), the process above remains the same, except that

$$\begin{aligned} \Sigma \,=\, \frac{1}{s} \left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} -c-s'+z^g+z^{-g} \end{array} \right] , \qquad {\dot{\Sigma }} \,=\, \frac{1}{s_1s_2} \left[ \begin{array}{cc} -s &{} s_2+z^gs_1 \\ s_2+z^{-g}s_1 &{} -c_1s_2-s_2's_1 \end{array} \right] ,\nonumber \\ \end{aligned}$$
(8.11)

and K is a \(2 \times 2\) matrix with its only nonzero entry being the lower right. In this case, one obtains (8.9) with an extra minus sign on one side. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, L., Li, W. & Shipman, S.P. Reducible Fermi Surface for Multi-layer Quantum Graphs Including Stacked Graphene. Commun. Math. Phys. 385, 1499–1534 (2021). https://doi.org/10.1007/s00220-021-04120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04120-z

Navigation