Skip to main content
Log in

Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove local well-posedness for the periodic derivative nonlinear Schrödinger equation, which is \(L^2\) critical, in Fourier-Lebesgue spaces which scale like \({H}^s({\mathbb {T}})\) for \(s>0\). Our result is optimal in the sense that it covers the full subcritical regime. In particular we close the existing gap in the subcritical theory by improving the result of Grünrock and Herr (SIAM J Math Anal 39(6):1890–1920, 2008), which established local well-posedness in Fourier-Lebesgue spaces which scale like \({H}^s({\mathbb {T}})\) for \(s >\frac{1}{4}\). We achieve this result by a delicate analysis of the structure of the solution and the construction of an adapted nonlinear submanifold of a suitable function space. Together these allow us to construct the unique solution to the given subcritical data. This constructive procedure is inspired by the theory of para-controlled distributions developed by Gubinelli et al. (Forum Math Pi, 3:75, 2015) and Catellier and Chouk (Ann Probab 46(5):2621–2679, 2018) in the context of stochastic PDE. Our proof and results however, are purely deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and henceforth we mean that the homogenous part of the Fourier-Lebesgue norm scales like the corresponding homogeneous Sobolev norm.

  2. More precisely the trilinear estimates containing as one of their inputs the derivative term.

  3. The operator \((i\partial _t + \partial ^2_x)^{-1}\) is just the Duhamel operator I as in (2.14). For technical reasons, here we in fact use the truncated version of the Duhamel operator \({\mathcal {I}}\) as in (2.16).

  4. Note that for data with finite mass, Eq. (1.1) is in fact gauged equivalent to (1.5).

  5. Local well-posedness for the gauged equation (1.5) implies local existence, uniqueness and continuity of the flow map for (1.1) [27, 40].

  6. When \(p=q=2\) these spaces coincide with Bourgain’s Fourier restriction norm spaces associated to the Schrödinger equation, and are simply denoted by \(X^{s, b}\).

  7. In principle, it might be possible that a trilinear estimate holds in some exotic Banach space not of form \(X_{p,q}^{s,b}\) but, if not unlikely, this would at least require a rather sophisticated construction.

  8. See also, later work by Burq and Tzvetkov in the context of nonlinear wave equations [9].

  9. More precisely, here the solution v is supposed to contain three parts: w, a term paracontrolled by \(\partial _x\overline{w}\) and a term paracontrolled by \(\partial _x\overline{w} \, w\) as in (1.13).

  10. Note that the decomposition of v is nonlinear both in w and in the para-controlled terms.

  11. More precisely for \(\delta >0\) and \(q = \frac{1}{4\delta }\), the right space is \(X^{\frac{1}{2}, 1-2 \delta }_{p, q}\). See Sect. 3 for precise definitions.

  12. Here “high” and “low” are with respect to the frequencies \(k_2\) and \(k_3\).

  13. Note that in [27] this same space is denoted by \(\widehat{H}^s_{p^{\prime }}({\mathbb {T}})\) where \(\frac{1}{p}+ \frac{1}{p^{\prime }} = 1\).

  14. We note that a weaker version of Lemma 3.4 here already appeared in [27], Lemma 3.1.

  15. The difference between \(E_L\) and \(E_L^Y\)—same for \(E_N\)—which we call \(E^X_L\) as defined in (4.4) will appear in the Eq. (4.16) for w.

  16. The divisor bound applies when \(\Delta \ne 0\); however when \(\Delta =0\) we must have \(k=k_1=k_2=k_3\) by the definition of \({\mathbb {V}}_3\), so the bound is still true.

  17. Here we mean pairings as defined in Lemma 3.4.

  18. This kernel depends on \(k_j\) and \(\lambda _j\), but we will write it as \(R(\lambda ,\sigma )\) for simplicity.

References

  1. Alazard, T.: Paralinearization of the Dirichlet–Neumann operator and applications to progressive gravity waves. Sci. China Math. 55(2), 207–220 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bailleul, I., Bernicot, F.: Heat semigroup and singular PDEs. J. Funct. Anal. 270(9), 3344–3452 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Biagioni, H.A., Linares, F.: Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations. Trans. Am. Math. Soc. 353(9), 3649–3659 (2001)

    MATH  Google Scholar 

  4. Bényi, A., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \({\mathbb{R}}^d\), \(d\ge 3\). Trans. Am. Math. Soc. Ser. B 2, 1–50 (2015)

    MATH  Google Scholar 

  5. Bényi, A., Pocovnicu, O., Oh, T.: Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \({\mathbb{R}}^3\). Trans. Am. Math. Soc. Ser. B 6, 114–160 (2019)

    MATH  Google Scholar 

  6. Bourgain, J.: Invariant measures for the \(2D\) defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    ADS  MATH  Google Scholar 

  7. Bourgain, J.: Global solutions of nonlinear Schrödinger equations. Am. Math. Soc. Colloq. Pub. 46, 99–107 (1999)

    MATH  Google Scholar 

  8. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449–475 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Burq, N., Thoman, L., Tzvetkov, N.: Long time dynamics for the one dimensional non linear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 63(6), 2137–2198 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab. 46(5), 2621–2679 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Champeaux, L.D., Passot, T., Sulem, P.-L.: Remarks on the parallel propagation of small-amplitude dispersive Alfvén waves. Nonlinear Proc. Geophys. 6, 169–178 (1999)

    ADS  Google Scholar 

  13. Chandra, A., Weber, H.: Stochastic PDEs, regularity structures, and interacting particle systems. Ann. Fac. Sci. Toulouse Math. (6) 26(4), 847–909 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Chanillo, S., Czubak, M., Mendelson, D., Nahmod, A., Staffilani, G.: Almost sure boundedness of iterates for derivative nonlinear wave equations. To appear in Comm. Anal. Geom. (2020). arXiv:1710.09346 [math.AP]

  15. Christ, M.: Power series solution of a nonlinear Schrödinger equation, mathematical aspects of nonlinear dispersive equations. Ann. Math. Stud. 163, 131–155 (2007)

    MATH  Google Scholar 

  16. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33(3), 649–669 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 34(1), 64–86 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \(L^2({\mathbb{T}})\). Duke Math. J. 161(3), 367–414 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Da Prato, G., Debussche, A.: Two-dimensional Navier–Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Deng, Y.: Invariance of the Gibbs measure for the Benjamin–Ono equation. J. Eur. Math. Soc. (JEMS) 17(5), 1107–1198 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Deng, Y.: Two-dimensional nonlinear Schrödinger equation with random radial data. Anal. PDE 5(5), 913–960 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Dodson, B., Lührmann, J., Mendelson, D.: Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. Adv. Math. 347, 619–676 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Grigoryan, V., Nahmod, A.: Almost critical well-posedness for nonlinear wave equations with \(Q_{\mu \nu }\) null forms in 2D. Math. Res. Lett. 21(2), 313–332 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Grünrock, A.: Bi and Trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. 41, 2525–2558 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Grünrock, A.: On the wave equation with quadratic nonlinearities in three space dimensions. J. Hyperbolic Differ. Equ. 8(1), 1–8 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Grünrock, A., Herr, S.: Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39(6), 1890–1920 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, 75 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Gubinelli, M., Imkeller, P., Perkowski, N.: A Fourier analytic approach to pathwise stochastic integration. Electron. J. Probab. 21(2), 37 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Gubinelli, M., Perkowski, N.: Lectures on singular stochastic PDEs. In: Ensaios Matemáticos [Mathematical Surveys], vol. 29, p. 89. Sociedade Brasileira de Matemática, Rio de Janeiro (2015)

  31. Gubinelli, M., Koch, H., Oh, T.: Renormalization of the two-dimensional stochastic nonlinear wave equations. Trans. Am. Math. Soc. 370(10), 7335–7359 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Gubinelli, M., Koch, H., Oh, T.: Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. arXiv:1811.07808 [math.AP]

  33. Hairer, M.: Solving the KPZ equation. Ann. Math. (2) 178(2), 559–664 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Hairer, M.: Singular stochastic, P.D.E. Proc. ICM-Seoul I, 685–709 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Hairer, M.: Regularity structures and the dynamical \(\Phi ^4_3\) model. In: Jerison, D., Mazur, B., Mrowka, T., Schmid, W., Stanley, R., Yau, S.T. (eds.) Current Developments in Mathematics 2014, pp. 1–49. International Press, Somerville (2016)

    Google Scholar 

  37. Hayashi, N.: The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonlinear Anal. 20(7), 823–833 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Phys. D 55(1–2), 14–36 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schrödinger equation of derivative type. SIAM J. Math. Anal. 25(6), 1488–1503 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Herr, S.: On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition. Int. Math. Res. Not. Article ID 96763, 1–33 (2006)

  41. Hirayama, H., Okamoto, M.: Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete Contin. Dyn. Syst. 36(12), 6943–6974 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Hörmander, L.: The Analysis of Linear Partial Differential Operators. II, Grundlehren der Mathematischen Wissenschaften, vol. 257. Springer, Berlin (1983)

    Google Scholar 

  43. Hörmander, L.: The Nash–Moser Theorem and Paradifferential Operators, Analysis et Cetera, pp. 429–449. Academic Press, Boston (1990)

    Google Scholar 

  44. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Global well-posesedness for the derivative nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 43(8), 1151–1195 (2018)

    MATH  Google Scholar 

  45. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys. 363(3), 1003–1049 (2018)

    ADS  MATH  Google Scholar 

  46. Jenkins, R., Liu, J., Perry, P., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities. arXiv:1804.01506v3 (math.AP)

  47. Jenkins, R., Liu, J., Perry, P., Sulem, C.: The derivative nonlinear Schrödinger equation, global well-posedness and soliton resolution. Quart. Appl. Math. 78(1), 33–73 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Kaup, D.J., Newell, A.C.: An exact solution for the derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    ADS  MATH  Google Scholar 

  49. Lee, J.-H.: Global solvability of the derivative nonlinear Schrödinger equation. Trans. Am. Math. Soc. 314(1), 107–118 (1989)

    MATH  Google Scholar 

  50. Miao, C., Wu, Y., Xu, G.: Global well-posedness for Schrödinger equation with derivative in \(H^{\frac{1}{2}}({\mathbb{R}})\). J. Differ. Equ. 251(8), 2164–2195 (2011)

    ADS  MATH  Google Scholar 

  51. Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265–271 (1976)

    ADS  MATH  Google Scholar 

  52. Mjolhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    ADS  Google Scholar 

  53. Mosincat, R.: Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in \(H^{\frac{1}{2}}\). J. Differ. Equ. 263(8), 4658–4722 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Mosincat, R., Yoon, H.: Unconditional uniqueness for the derivatve Schrödinger equation on the real line. Discrete Contin. Dyn. Syst. 40(1), 47–80 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Mosincat, R., Oh, T.: A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. C. R. Math. Acad. Sci. Paris 353(9), 837–841 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Mourrat, J., Weber, H.: The dynamic \(\Phi ^4_3\) model comes down from infinity. Commun. Math. Phys. 356(3), 673–753 (2017)

    ADS  MATH  Google Scholar 

  57. Mourrat, J., Weber, H., Xu, W.: Construction of \(\Phi ^4_3\) diagrams for pedestrians. In: Gonçalves, P., Soares A. (eds.) From Particle Systems to Partial Differential Equations. PSPDE 2015. Springer Proceedings in Mathematics & Statistics, vol 209, pp. 1–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66839-0_1

  58. Nahmod, A.R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. (JEMS) 14(4), 1275–1330 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Nahmod, A.R., Rey-Bellet, L., Sheffield, S., Staffilani, G.: Absolute continuity of Brownian bridges under certain gauge transformations. Math. Res. Lett. 18(5), 875–887 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Nahmod, A., Staffilani, G.: Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space. J. Eur. Math. Soc. (JEMS) 17(7), 1687–1759 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45(1), 137–163 (1996)

    MathSciNet  MATH  Google Scholar 

  62. Pelinovsky, D.E., Shimabukuro, Y.: Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. Int. Math. Res. Not. 18, 5663–5728 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Takaoka, H.: Well-posedness for the one dimensional nonlinear Schrödinger equation with the derivative nonlinearity. Adv. Differ. Equ. 4(4), 561–580 (1999)

    MATH  Google Scholar 

  64. Takaoka, H.: Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low order Sobolev spaces. Electron. J. Differ. Equ. 42, 23 (2001). (electronic)

    MATH  Google Scholar 

  65. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Thomann, L.: Random data Cauchy problem for supercritical Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2385–2402 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Tsutsumi, M., Fukuda, I.: On solutions of the derivative nonlinear Schrödinger equation II. Funkcial. Ekvac. 24(1), 85–94 (1981)

    MathSciNet  MATH  Google Scholar 

  68. Vargas, A., Vega, L.: Global well-posedness for 1D Schrödinger equations for data with an infinite \(L^2\)-norm. J. Math. Pures Appl. (9) 80(10), 1029–1044 (2001)

    MathSciNet  MATH  Google Scholar 

  69. Win, Y.: Global well-posedness of the derivative nonlinear Schrödinger equations on \({ T}\). Funkcial. Ekvac. 53, 51–88 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Yue, H.: Almost sure well-posedness for the cubic nonlinear Schrödinger equation in the super-critical regime on \({\mathbb{T}}^d\), \(d\ge 3\). arXiv:1808.00657 [math.AP]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea R. Nahmod.

Additional information

Communicated by W. Schlag

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrea R. Nahmod is partially supported by NSF-DMS-1463714 and NSF-DMS-1800852.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Nahmod, A.R. & Yue, H. Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation. Commun. Math. Phys. 384, 1061–1107 (2021). https://doi.org/10.1007/s00220-020-03898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03898-8

Navigation