Skip to main content
Log in

Self-similar Asymptotics for a Modified Maxwell–Boltzmann Equation in Systems Subject to Deformations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study a generalized class of Maxwell–Boltzmann equations which in addition to the usual collision term contains a linear deformation term described by a matrix A. This class of equations arises, for instance, from the analysis of homoenergetic solutions for the Boltzmann equation considered by many authors since 1950s. Our main goal is to study a large time asymptotics of solutions under assumption of smallness of the matrix A. The main result of this paper is that for sufficiently small norm of A any non-negative solution with finite second moment tends to a self-similar solution of relatively simple form for large values of time. We also prove that the higher order moments of the self-similar profile are finite under further smallness condition on the matrix A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  2. Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann equation and their applications. J. Stat. Phys. 106(5–6), 1039–1071 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bobylev, A.V., Cercignani, C.: Exact eternal solutions of the Boltzmann equation. J. Stat. Phys. 106(5–6), 1019–1039 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 1–2, 335–375 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann for granular materials. J. Stat. Phys. 111(1–2), 403–417 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bobylev, A.V.: The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules (Russian). Dokl. Akad. Nauk. SSSR 225, 1041–1044 (1975). Soviet Phys. Dokl. 20, 820–822 (1976)

  7. Bobylev, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules. Sov. Scient. Rev. C 7, 111–233 (1988)

    MATH  Google Scholar 

  8. Bobylev, A.V., Cercignani, C., Gamba, I.M.: On the self-similar asymptotics for generalized non-linear kinetic Maxwell models. Commun. Math. Phys. 291, 599–644 (2009)

    Article  ADS  Google Scholar 

  9. Bobylev, A.V., Caraffini, G.L., Spiga, G.: On group invariant solutions of the Boltzmann equation. J. Math. Phys. 37, 2787–2795 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, New York (1998)

    Book  Google Scholar 

  11. Cercignani, C.: Existence of homoenergetic affine flows for the Boltzmann equation. Arch. Ration. Mech. Anal. 105(4), 377–387 (1989)

    Article  MathSciNet  Google Scholar 

  12. Cercignani, C.: Shear flow of a granular material. J. Stat. Phys. 102(5), 1407–1415 (2001)

    Article  MathSciNet  Google Scholar 

  13. Cercignani, C.: The Boltzmann equation approach to the shear flow of a granular material. Philos. Trans. R. Soc. 360, 437–451 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys. 109(3–4), 407–732 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Galkin, V.S.: On a class of solutions of Grad’s moment equation. PMM 22(3), 386–389 (1958). (Russian version) PMM 20, 445–446 (1956)

  16. Feller, W.: An Introduction to Probability Theory and Applications, vol. 2. Wiley, New York (1971)

    MATH  Google Scholar 

  17. Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows: Nonlinear Transport. Kluwer Academic Publishers, Dordrech (2003)

    Book  Google Scholar 

  18. James, R.D., Nota, A., Velázquez, J.J.L.: Self-similar profiles for homoenergetic solutions of the Boltzmann equation: particle velocity distribution and entropy. Arch. Ration. Mech. 231(2), 787–843 (2019)

    Article  MathSciNet  Google Scholar 

  19. James, R.D., Nota, A., Velázquez, J.J.L.: Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: collision-dominated case. J. Nonlinear Sci. 29(5), 1943–1973 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. James, R.D., Nota, A., Velázquez, J.J.L.: Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: hyperbolic-dominated case. Nonlinearity 33(8), 3781–3815 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Matthies, K., Theil, F.: Rescaled objective solutions of Fokker–Planck and Boltzmann equations. SIAM J. Math. Anal. 51(2), 1321–1348 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer (1976)

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Volume II, Fourier Analysis, Self-adjointness. Academic Press, London (1975)

    MATH  Google Scholar 

  24. Truesdell, C.: On the pressures and flux of energy in a gas according to Maxwell’s kinetic theory II. J. Ration. Mech. Anal. 5, 55–128 (1956)

    MathSciNet  MATH  Google Scholar 

  25. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. Truesdell, C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, London (1980)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Hausdorff Research Institute for Mathematics (Bonn), through the Junior Trimester Program on Kinetic Theory, and of the CRC 1060 The mathematics of emergent effects at the University of Bonn funded through the German Science Foundation (DFG). A.V.B. also acknowledges the support of Russian Basic Research Foundation (Grant 17-51-52007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Nota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the matrix equation for B(t)

Appendix A: Derivation of the matrix equation for B(t)

To obtain the equation for the second moments (cf. (6.11)) we compute first the left hand side of (2.6) acting over functions \({\varphi }\) with the form (6.10). Then it becomes

$$\begin{aligned}&-\frac{1}{2} \sum _{j,\ell =1}^{d} \partial _t b_{j,\ell }(t) \ k_j k_{\ell } -\frac{1}{2}\sum _{j}^{d} \sum _{r,s=1}^{d} \left( A_{r,j}b_{r,s}(t) \ k_j k_{s}+A_{s,j}b_{r,s}(t) \ k_j k_{r} \right) \nonumber \\&\quad =-\frac{1}{2} \sum _{j,\ell =1}^{d} \partial _t b_{j,\ell }(t) \ k_j k_{\ell } -\frac{1}{2} \sum _{r=1}^{d} \sum _{j,\ell =1}^{d}\left( A_{r,j}b_{\ell ,r}(t) + A_{r,\ell }b_{j,r}(t) \right) k_j k_{\ell } \end{aligned}$$
(11.1)

where we have used the symmetry of \(B=(b_{j,\ell })_{j,\ell =1}^{d}\). The right hand side of (2.6) gives

$$\begin{aligned} \Gamma [{\varphi }](k)-{\varphi }(k)&= -\frac{1}{4} \int _{S^{d-1}} dn \ g(\hat{k}\cdot n) \left[ \sum _{j,\ell =1}^{d}b_{j,\ell }(t) \left( k_{j}k_{\ell }+|k|^2 n_{j}n_{\ell }\right) \right] \nonumber \\&\quad +\frac{1}{2}\sum _{j,\ell =1}^{d} b_{j,\ell }(t) \ k_j k_{\ell } + O(\vert k\vert ^p)\nonumber \\&=\frac{1}{2} \sum _{j,\ell =1}^{d}b_{j,\ell }(t) \int _{S^{d-1}} dn \ g(\hat{k}\cdot n) \left[ \frac{1}{2} k_{j}k_{\ell } -\frac{1}{2} \vert k \vert ^2 n_j n_\ell \right] +O(\vert k\vert ^p)\nonumber \\&=\frac{1}{4} \sum _{j,\ell =1}^{d}b_{j,\ell }(t) T_{j,\ell }+O(\vert k\vert ^p) \end{aligned}$$
(11.2)

where

$$\begin{aligned} T_{j,\ell }:= \int _{S^{d-1}} dn \ g(\hat{k}\cdot n) \big ( k_{j}k_{\ell } - \vert k \vert ^2 n_j n_\ell \big ). \end{aligned}$$
(11.3)

Notice that \(T_{j,\ell }\) is a traceless isotropic tensor depending on k. Therefore, it has the form \( T_{j,\ell }= C_0\big (k_{j}k_{\ell } -\frac{\vert k \vert ^2}{ d} \delta _ {j,\ell }\big )\) for some \(C_0\in {\mathbb {R}}\).

Computing the tensor for the particular choice of the vector \(k=(1,0,\ldots )\) we obtain

$$\begin{aligned} C_0\left( \frac{d-1}{d}\right) = \int _{S^{d-1}} dn \ g(\hat{k}\cdot n) \big ( 1- (\hat{k}\cdot n)^2 \big ) :=q, \end{aligned}$$
(11.4)

hence

$$\begin{aligned} T_{j,\ell }= \left( \frac{d}{d-1}\right) q \big ( k_{j}k_{\ell } - \frac{1}{d} \vert k \vert ^2 \delta _{j,\ell } \big ). \end{aligned}$$

Thus (11.2) becomes

$$\begin{aligned} \Gamma [{\varphi }](k)-{\varphi }(k)= \frac{q d}{4(d-1)} \sum _{j,\ell =1}^{d}b_{j,\ell }(t) \big ( k_{j}k_{\ell } - \frac{1}{d} \vert k \vert ^2 \delta _{j,\ell } \big )+O(\vert k\vert ^p). \end{aligned}$$
(11.5)

Thus, combining (11.1) with (11.5), we obtain

$$\begin{aligned}&\partial _t b_{j,\ell }(t) + \sum _{r=1}^{d} \left( A_{r,j}b_{\ell ,r}(t) + A_{r,\ell }b_{j,r}(t) \right) =- \frac{q d}{2(d-1)} b_{j,\ell }(t) + \frac{q}{2(d-1)} {{\,\mathrm{Tr}\,}}(B) \delta _{j,\ell } \end{aligned}$$

that can be rewritten in matrix form as

$$\begin{aligned} \partial _t B+ \big (BA +(BA)^T\big )+\frac{q d}{2(d-1)} \left( B - \frac{{{\,\mathrm{Tr}\,}}(B)}{d}I\right) =0 \end{aligned}$$
(11.6)

where \(M^T\) denotes the transposed of the matrix M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, A., Nota, A. & Velázquez, J.J.L. Self-similar Asymptotics for a Modified Maxwell–Boltzmann Equation in Systems Subject to Deformations. Commun. Math. Phys. 380, 409–448 (2020). https://doi.org/10.1007/s00220-020-03858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03858-2

Navigation