Skip to main content
Log in

Physics and Geometry of Knots-Quivers Correspondence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The recently conjectured knots-quivers correspondence (Kucharski et al. in Phys Rev D 96(12):121902, 2017. arXiv:1707.02991, Adv Theor Math Phys 23(7):1849–1902, 2019. arXiv:1707.04017) relates gauge theoretic invariants of a knot K in the 3-sphere to the representation theory of a quiver \(Q_{K}\) associated to the knot. In this paper we provide geometric and physical contexts for this conjecture within the framework of Ooguri-Vafa large N duality (Ooguri and Vafa in Nucl Phys B 577:419–438, 2000), that relates knot invariants to counts of holomorphic curves with boundary on \(L_{K}\), the conormal Lagrangian of the knot in the resolved conifold, and corresponding M-theory considerations. From the physics side, we show that the quiver encodes a 3d \({\mathcal {N}}=2\) theory \(T[Q_{K}]\) whose low energy dynamics arises on the worldvolume of an M5 brane wrapping the knot conormal and we match the (K-theoretic) vortex partition function of this theory with the motivic generating series of \(Q_{K}\). From the geometry side, we argue that the spectrum of (generalized) holomorphic curves on \(L_{K}\) is generated by a finite set of basic disks. These disks correspond to the nodes of the quiver \(Q_{K}\) and the linking of their boundaries to the quiver arrows. We extend this basic dictionary further and propose a detailed map between quiver data and topological and geometric properties of the basic disks that again leads to matching partition functions. We also study generalizations of A-polynomials associated to \(Q_{K}\) and (doubly) refined version of LMOV invariants (Ooguri and Vafa 2000; Labastida and Marino in Commun Math Phys 217(2):423–449, 2001. arXiv:hep-th/0004196; Labastida et al. in JHEP 11:007, 2000. arXiv:hep-th/0010102; Aganagic and Vafa in Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots. arXiv:1204.4709; Fuji et al. in Nucl Phys B 867:506–546, 2013. arXiv:1205.1515).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123

    ADS  MathSciNet  MATH  Google Scholar 

  2. Witten, E.: Chern–Simons gauge theory as a string theory. Prog. Math. 133, 637–678 (1995). arXiv:hep-th/9207094

    MathSciNet  MATH  Google Scholar 

  3. Kucharski, P., Reineke, M., Stosic, M., Sulkowski, P.: BPS states, knots and quivers. Phys. Rev. D 96(12), 121902 (2017). arXiv:1707.02991

    ADS  MathSciNet  Google Scholar 

  4. Kucharski, P., Reineke, M., Stosic, M., Sulkowski, P.: Knots-quivers correspondence. Adv. Theor. Math. Phys. 23(7), 1849–1902 (2019). arXiv:1707.04017

    MathSciNet  Google Scholar 

  5. Kucharski, P., Sulkowski, P.: BPS counting for knots and combinatorics on words. JHEP 11, 120 (2016). arXiv:1608.06600

    ADS  MathSciNet  MATH  Google Scholar 

  6. Luo, W., Zhu, S.: Integrality structures in topological strings I: framed unknot. arXiv:1611.06506

  7. Zhu, S.: Topological strings, quiver varieties and Rogers–Ramanujan identities. Ramanujan J. 48(2), 399–421 (2019). arXiv:1707.00831

    MathSciNet  MATH  Google Scholar 

  8. Aganagic, M., Ekholm, T., Ng, L., Vafa, C.: Topological strings, D-model, and knot contact homology. Adv. Theor. Math. Phys. 18(4), 827–956 (2014). arXiv:1304.5778

    MathSciNet  MATH  Google Scholar 

  9. Ekholm, T., Shende, V.: Skeins on branes, arXiv:1901.08027

  10. Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011). arXiv:1006.0977

    ADS  MathSciNet  MATH  Google Scholar 

  11. Terashima, Y., Yamazaki, M.: SL(2, R) Chern–Simons, Liouville, and gauge theory on duality walls. JHEP 08, 135 (2011). arXiv:1103.5748

    ADS  MATH  Google Scholar 

  12. Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367–419 (2014). arXiv:1108.4389

    ADS  MathSciNet  MATH  Google Scholar 

  13. Yagi, J.: 3d TQFT from 6d SCFT. JHEP 08, 017 (2013). arXiv:1305.0291

    ADS  Google Scholar 

  14. Lee, S., Yamazaki, M.: 3d Chern–Simons theory from M5-branes. JHEP 12, 035 (2013). arXiv:1305.2429

    ADS  MathSciNet  MATH  Google Scholar 

  15. Cordova, C., Jafferis, D.L.: Complex Chern–Simons from M5-branes on the squashed three-sphere. JHEP 11, 119 (2017). arXiv:1305.2891

    ADS  MathSciNet  MATH  Google Scholar 

  16. Fuji, H., Gukov, S., Sulkowski, P.: Super-A-polynomial for knots and BPS states. Nucl. Phys. B 867, 506–546 (2013). arXiv:1205.1515

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dunfield, N.M., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006). arXiv:math/0505662

    MathSciNet  MATH  Google Scholar 

  18. Hwang, C., Yi, P., Yoshida, Y.: Fundamental vortices, wall-crossing, and particle-vortex duality. JHEP 05, 099 (2017). arXiv:1703.00213

    ADS  MathSciNet  MATH  Google Scholar 

  19. Denef, F.: Quantum quivers and Hall/hole halos. JHEP 10, 023 (2002). arXiv:hep-th/0206072

    ADS  MathSciNet  Google Scholar 

  20. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \(\cal{N} = 2\) quantum field theories and their BPS quivers. Adv. Theor. Math. Phys. 18(1), 27–127 (2014). arXiv:1112.3984

    MathSciNet  MATH  Google Scholar 

  21. Gabella, M., Longhi, P., Park, C.Y., Yamazaki, M.: BPS graphs: from spectral networks to BPS quivers. JHEP 07, 032 (2017). arXiv:1704.04204

    ADS  MathSciNet  MATH  Google Scholar 

  22. Ekholm, T., Ng, L.: Higher genus knot contact homology and recursion for colored HOMFLY-PT polynomials. arXiv:1803.04011

  23. Iacovino, V.: Open Gromov–Witten theory on Calabi–Yau three-folds I. arXiv:0907.5225

  24. Iacovino, V.: Open Gromov–Witten theory on Calabi–Yau three-folds II, arXiv:0908.0393

  25. Iacovino, V.: Frame ambiguity in open Gromov–Witten invariants. arXiv:1003.4684

  26. Okounkov, A., Pandharipande, R.: Hodge integrals and invariants of the unknot. Geom. Topol. 8, 675–699 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Katz, S., Liu, C.-C.M.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys. 5(1), 1–49 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2), 239–246 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Przytycki, J., Traczyk, P.: Invariants of links of Conway type. Kobe J. Math. 4, 115–139 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Labastida, J.M.F., Marino, M.: Polynomial invariants for torus knots and topological strings. Commun. Math. Phys. 217(2), 423–449 (2001). arXiv:hep-th/0004196

    ADS  MathSciNet  MATH  Google Scholar 

  32. Labastida, J.M.F., Marino, M., Vafa, C.: Knots, links and branes at large \(N\). JHEP 11, 007 (2000). arXiv:hep-th/0010102

    ADS  MathSciNet  MATH  Google Scholar 

  33. Kirillov, A.: Quiver representations and quiver varieties. Graduate Studies in Mathematics. American Mathematical Society (2016)

  34. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435

  35. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Num. Theor. Phys. 5, 231–352 (2011). arXiv:1006.2706

    MathSciNet  MATH  Google Scholar 

  36. Meinhardt, S., Reineke, M.: Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. arXiv:1411.4062

  37. Franzen, H., Reineke, M.: Semi-stable Chow–Hall algebras of quivers and quantized Donaldson-Thomas invariants. arXiv:1512.03748

  38. Efimov, A.I.: Cohomological Hall algebra of a symmetric quiver. Compos. Math. 148(4), 1133–1146 (2012). arXiv:1103.2736

    MathSciNet  MATH  Google Scholar 

  39. Stosic, M., Wedrich, P.: Rational links and DT invariants of quivers. Int. Math. Res. Notices, rny289 (2019) arXiv:1711.03333

  40. Panfil, M., Sulkowski, P., Stosic, M.: Donaldson–Thomas invariants, torus knots, and lattice paths. Phys. Rev. D 98(2), 026022 (2018). arXiv:1802.04573

    ADS  MathSciNet  Google Scholar 

  41. Sulkowski, P., Panfil, M.: Topological strings, strips and quivers. JHEP 01, 124 (2019). arXiv:1811.03556

    ADS  MathSciNet  MATH  Google Scholar 

  42. Gopakumar, R., Vafa, C.: M-theory and topological strings—I. arXiv:hep-th/9809187

  43. Gopakumar, R., Vafa, C.: M-theory and topological strings—II. arXiv:hep-th/9812127

  44. Douglas, M.R., Moore, G.W.: D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167

  45. Fiol, B., Marino, M.: BPS states and algebras from quivers. JHEP 07, 031 (2000). arXiv:hep-th/0006189

    ADS  MathSciNet  MATH  Google Scholar 

  46. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete N=2 quantum field theories. Commun. Math. Phys. 323, 1185–1227 (2013). arXiv:1109.4941

    ADS  MathSciNet  MATH  Google Scholar 

  47. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415–1443 (1999). arXiv:hep-th/9811131

    MathSciNet  MATH  Google Scholar 

  48. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041

  49. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1–28 (2002). arXiv:hep-th/0105045

    ADS  MathSciNet  MATH  Google Scholar 

  50. Shadchin, S.: On F-term contribution to effective action. JHEP 08, 052 (2007). arXiv:hep-th/0611278

    ADS  MathSciNet  MATH  Google Scholar 

  51. Witten, E., Olive, D.I.: Supersymmetry algebras that include topological charges. Phys. Lett. 78B, 97–101 (1978)

    ADS  Google Scholar 

  52. Hori, K., Kim, H., Yi, P.: Witten index and wall crossing. JHEP 01, 124 (2015). arXiv:1407.2567

    ADS  MathSciNet  MATH  Google Scholar 

  53. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101, 359–426 (2000). arXiv:math/9908171

    MathSciNet  MATH  Google Scholar 

  54. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fund. Math. 199, 1–91 (2008). arXiv:math/0401268

    MathSciNet  MATH  Google Scholar 

  55. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12, 1387–1425 (2008). arXiv:math/0505056

    MathSciNet  MATH  Google Scholar 

  56. Gukov, S., Nawata, S., Saberi, I., Stosic, M., Sulkowski, P.: Sequencing BPS spectra. JHEP 03, 004 (2016). arXiv:1512.07883

    ADS  MathSciNet  MATH  Google Scholar 

  57. Gukov, S., Stosic, M.: Homological algebra of knots and BPS states. Proc. Symp. Pure Math. 85, 125–172 (2012). arXiv:1112.0030. [Geom. Topol. Monographs 18 (2012) 309]

    MathSciNet  MATH  Google Scholar 

  58. Gorsky, E., Gukov, S., Stosic, M.: Quadruply-graded colored homology of knots. arXiv:1304.3481

  59. Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots. arXiv:1204.4709

  60. Garoufalidis, S., Lauda, A.D., Le, T.T.Q.: The colored HOMFLY-PT polynomial is \(q\)-holonomic. Duke Math. J. 167(3), 397–447 (2018). arXiv:1604.08502

    MathSciNet  MATH  Google Scholar 

  61. Fuji, H., Gukov, S., Sulkowski, P., Stosic, M.: 3d analogs of Argyres–Douglas theories and knot homologies. JHEP 01, 175 (2013). arXiv:1209.1416

    ADS  Google Scholar 

  62. Ng, L.: Framed knot contact homology. Duke Math. J. 141(2), 365–406 (2008). arXiv:math/0407071

    MathSciNet  MATH  Google Scholar 

  63. Ng, L.: Combinatorial knot contact homology and transverse knots. Adv. Math. 227(6), 2189–2219 (2011). arXiv:1010.0451

    MathSciNet  MATH  Google Scholar 

  64. Garoufalidis, S., Kucharski, P., Sulkowski, P.: Knots, BPS states, and algebraic curves. Commun. Math. Phys. 346(1), 75–113 (2016). arXiv:1504.06327

    ADS  MathSciNet  MATH  Google Scholar 

  65. Chung, H.-J., Dimofte, T., Gukov, S., Sulkowski, P.: 3d–3d correspondence revisited. JHEP 04, 140 (2016). arXiv:1405.3663

    ADS  MathSciNet  MATH  Google Scholar 

  66. Ng, L.: A topological introduction to knot contact homology. arXiv:1210.4803

  67. Dadda, A., Davis, A.C., Di Vecchia, P., Salomonson, P.: An effective action for the supersymmetric CP \(^{n-1}\) model. Nuclear Phys. B 222, 45–70 (1983)

    ADS  MathSciNet  Google Scholar 

  68. Witten, E.: Phases of N=2 theories in two-dimensions. Nucl. Phys. B 403, 159–222 (1993). arXiv:hep-th/9301042 [AMS/IP Stud. Adv. Math. 1 (1996) 143–211]

    ADS  MathSciNet  MATH  Google Scholar 

  69. Hanany, A., Hori, K.: Branes and N=2 theories in two-dimensions. Nucl. Phys. B 513, 119–174 (1998). arXiv:hep-th/9707192

    ADS  MathSciNet  MATH  Google Scholar 

  70. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  71. Dimofte, T., Gukov, S.: Chern–Simons theory and S-duality. JHEP 05, 109 (2013). arXiv:1106.4550

    ADS  MathSciNet  MATH  Google Scholar 

  72. Lawrence, A.E., Nekrasov, N.: Instanton sums and five-dimensional gauge theories. Nucl. Phys. B 513, 239–265 (1998). arXiv:hep-th/9706025

    ADS  MathSciNet  MATH  Google Scholar 

  73. Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). arXiv:0807.4723

    ADS  MathSciNet  MATH  Google Scholar 

  74. Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.J.: Aspects of N=2 supersymmetric gauge theories in three-dimensions. Nucl. Phys. B 499, 67–99 (1997). arXiv:hep-th/9703110

    ADS  MathSciNet  MATH  Google Scholar 

  75. Smolinski, P.: From Topological Strings to Quantum Invariants of Knots and Quivers. Master’s thesis, University of Warsaw (2017)

  76. Aganagic, M., Shakirov, S.: Refined Chern–Simons theory and topological string. arXiv:1210.2733

  77. Beem, C., Dimofte, T., Pasquetti, S.: Holomorphic blocks in three dimensions. JHEP 12, 177 (2014). arXiv:1211.1986

    ADS  MathSciNet  MATH  Google Scholar 

  78. Hwang, C., Kim, H.-C., Park, J.: Factorization of the 3d superconformal index. JHEP 08, 018 (2014). arXiv:1211.6023

    ADS  Google Scholar 

  79. Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J., Kim, H.-C.: Vortices and Vermas, arXiv:1609.04406

  80. Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3d gauge theories. JHEP 05, 047 (2014). arXiv:1302.0015

    ADS  Google Scholar 

  81. Gukov, S.: Gauge theory and knot homologies. Fortsch. Phys. 55, 473–490 (2007). arXiv:0706.2369

    ADS  MathSciNet  MATH  Google Scholar 

  82. Gukov, S., Schwarz, A., Vafa, C.: Khovanov–Rozansky homology and topological strings. Lett. Math. Phys. 74, 53–74 (2005). arXiv:hep-th/0412243

    ADS  MathSciNet  MATH  Google Scholar 

  83. Wedrich, P.: Exponential growth of colored HOMFLY-PT homology. Adv. Math. 353, 471–525 (2019). arXiv:1602.02769

    MathSciNet  MATH  Google Scholar 

  84. Kameyama, M., Nawata, S.: Refined large N duality for knots. arXiv:1703.05408

  85. Gross, M., Pandharipande, R.: Quivers, curves, and the tropical vertex. arXiv:0909.5153

  86. Galakhov, D., Longhi, P., Mainiero, T., Moore, G.W., Neitzke, A.: Wild wall crossing and BPS giants. JHEP 11, 046 (2013). arXiv:1305.5454

    ADS  Google Scholar 

  87. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). arXiv:hep-th/9408099

    ADS  MathSciNet  MATH  Google Scholar 

  88. Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B 500, 3–42 (1997). arXiv:hep-th/9703166

    ADS  MathSciNet  MATH  Google Scholar 

  89. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987

  90. Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. Annales Henri Poincare 14, 1643–1731 (2013). arXiv:1204.4824

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Sergei Gukov, Hélder Larraguível, Fabrizio Nieri, Miłosz Panfil, Du Pei, Ingmar Saberi, Marko Stošić, Piotr Sułkowski, and Paul Wedrich for insightful discussions. We are also grateful to the organizers of the conferences “6th International Workshop on Combinatorics of Moduli Spaces, Cluster Algebras, and Topological Recursion” at Steklov Mathematical Institute, and “Quantum Fields, knots, and strings" at the University of Warsaw, where the results of this paper were presented. Parts of the paper is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors T.E. and P.K. were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the 2018 spring semester. P.L. thanks Aarhus QGM, the Aspen Center for Physics, ENS Paris, Caltech, The University of California at Berkeley, and Trinity College Dublin for hospitality during completion of this work. The work of T.E. is supported by the Knut and Alice Wallenberg Foundation and the Swedish Reserach Council. P.K. acknowledges support from the Knut and Alice Wallenberg Foundation. The work of P.L. is supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation. P.L. also acknowledges support from grants “Geometry and Physics”and “Exact Results in Gauge and String Theories” from the Knut and Alice Wallenberg Foundation during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Longhi.

Additional information

Communicated by H. T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cross-Check of \(\mathbf {t}\) Refinement

Cross-Check of \(\mathbf {t}\) Refinement

In order to compare refined LMOV invariants for trefoil obtained in Sect. 5.2 with [64] we have to adjust conventions and take care about some subtleties.

Authors of [64] use the convention of \(t_{r}\) refinement with \(-a^{2}t^{3}\) instead of \(-a^{2}t\) in the q-Pochhammer. Moreover, in section 4.7 concerning refined classical LMOV invariants they consider “super-A-polynomials as T-deformation and a-deformation of bottom A-polynomials (that arise for \(a=0\) and \(T=1\)), where \(t=-T^{2}\)”, which is equivalent to rescaling of \(N_{r}^{3_{1}}(a,q,t)\) by the overall a factor in such a way that it starts from 1. Therefore, the refined LMOV generating function for the fundamental representation should be transformed as follows

$$\begin{aligned} \begin{aligned} N_{1}^{3_{1}}(a,q,t)&=\left( 1+a^{2}t\right) \left( a^{2}q^{-2}+a^{2}q^{2}t^{2} +a^{4}t^{3}\right) \\&\rightsquigarrow \left( 1+a^{2}t^{3}\right) \left( 1+q^{4}t^{2}+a^{2}q^{2}t^{3}\right) . \end{aligned} \end{aligned}$$

In order to see 1 clearly, we rescaled also the q power, which however does not matter due to the semiclassical limit. It will also hide the q-shift between definitions of denominators of \(N_{r}(a,q,t)\) (we have \(1-q^{2}\), they have \(q-q^{-1}\)), however the sign difference will stay. In consequence

$$\begin{aligned} N_{1}^{3_{1}}(a,q=1,t)\rightsquigarrow -\left( 1+a^{2}t^{3}\right) \left( 1+t^{2}+a^{2}t^{3}\right) . \end{aligned}$$

Finally, authors of [64] put \(t=-T^{2}\) and then rescale \(a\rightarrow a^{1/2},\ T\rightarrow T^{1/2}\) to reduce the volume of Table 10 in the reference, which contains classical refined LMOV invariants. Unfortunately the last rescaling is not explicitly stated, for which the common author of the two papers apologizes. They consider only terms up to power 5, so summing up

$$\begin{aligned} N_{1}^{3_{1}}(a,q=1,t)\rightsquigarrow -\left( 1-aT^{3}\right) \left( 1+T^{2}-aT^{3}\right) =-1-T^{2}+2aT^{3}+aT^{5}+\ldots \end{aligned}$$

which is exactly equal to \(\sum _{i,j}\tilde{b}_{1,i,j}a^{i}T^{j}\) from [64, Table 10] (\(\tilde{b}_{r,i,j}\) denotes classical refined LMOV invariants in representation r corresponding to power i of a and power j of T).

We can repeat above steps for \(r=2,3,4\) to obtain

$$\begin{aligned} N_{2}^{3_{1}}(a,q=1,t)\rightsquigarrow&T^{2}-aT^{3}+T^{4}-5aT^{5}+\ldots \\ N_{3}^{3_{1}}(a,q=1,t)\rightsquigarrow&-2T^{4}+7aT^{5}+\ldots \\ N_{4}^{3_{1}}(a,q=1,t)\rightsquigarrow&T^{4}-3aT^{5}+\ldots \end{aligned}$$

which again matches results from [64, Table 10] perfectly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekholm, T., Kucharski, P. & Longhi, P. Physics and Geometry of Knots-Quivers Correspondence. Commun. Math. Phys. 379, 361–415 (2020). https://doi.org/10.1007/s00220-020-03840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03840-y

Navigation