Skip to main content
Log in

Asymptotic Phase-Locking Dynamics and Critical Coupling Strength for the Kuramoto Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2023

This article has been updated

Abstract

We study the asymptotic clustering (phase-locking) dynamics for the Kuramoto model. For the analysis of emergent asymptotic patterns in the Kuramoto flow, we introduce the pathwise critical coupling strength which yields a sharp transition from partial phase-locking to complete phase-locking, and provide nontrivial upper bounds for the pathwise critical coupling strength. Numerical simulations suggest that multi- and mono-clusters can emerge asymptotically in the Kuramoto flow depending on the relative magnitude of the coupling strength compared to the sizes of natural frequencies. However, theoretical and rigorous analysis for such phase-locking dynamics of the Kuramoto flow still lacks a complete understanding, although there were some recent progress on the complete synchronization of the Kuramoto model in a sufficiently large coupling strength regime (Dörfler and Bullo in SIAM J Appl Dyn Syst 10:1070–1099, 2011, Automatica 50:1539–1564, 2014; Ha et al. in Commun Math Sci 4:1073–1091, 2016). In this paper, we present sufficient frameworks for partial phase-locking of a majority ensemble and the complete phase-locking in terms of the initial phase configuration, coupling strength and natural frequencies. As a by-product of our analysis, we obtain nontrivial upper bounds for the pathwise critical coupling strength in terms of the diameter of natural frequencies, initial Kuramoto order parameter and the system size N. We also show that phase-locked states whose order parameters are less than \(N^{-\frac{1}{2}}\) are linearly unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Aeyels, D., Rogge, J.: Existence of partial entrainment and stability of phase-locking behavior of coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562 (1966)

    Article  ADS  Google Scholar 

  4. Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronski, J., Deville, L., Park, M.J.: Fully synchronous solutions and the synchronization phase transition for the finite-\(N\) Kuramoto model. Chaos 22, 033133 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67, 313–330 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Balmforth, N.J., Sassi, R.: A shocking display of synchrony. Phys. D 143, 21–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, Y.-P., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Phys. D 241, 735–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi, Y.-P., Ha, S.-Y., Kang, M.-M., Kang, M.: Exponential synchronization of finite-dimensional Kuramoto model at critical coupling strength. Commun. Math. Sci. 11, 385–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crawford, J.D., Davies, K.T.R.: Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings. Phys. D 125, 1–46 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Smet, F., Aeyels, D.: Partial frequency in finite Kuramoto–Sakaguchi model. Phys. D 234, 81–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ermentrout, G.B.: Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol. 22, 1–9 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ha, S.-Y.: Lyapunov functional approach and collective dynamics of some interacting many-body systems. In: Proceedings of the International Congress of Mathematicians: Seoul 2014. Vol. III, pp. 1123–1140, Kyung Moon Sa, Seoul (2014)

  18. Ha, S.-Y., Ha, T.Y., Kim, J.-H.: On the complete synchronization for the globally coupled Kuramoto model. Phys. D 239, 1692–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ha, S.-Y., Kim, H.K., Park, J.-Y.: Remarks on the complete synchronization of Kuramoto oscillators. Nonlinearity 28, 1441–1462 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Kim, H.K., Ryoo, S.-Y.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 4, 1073–1091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ha, S.-Y., Kim, H.K., Ryoo, S.-Y.: On the finiteness of collisions and phase-locked states for the Kuramoto model. J. Stat. Phys. 163, 1394–1424 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ha, S.-Y., Ko, D., Ryoo, S.-Y.: On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. J. Stat. Phys. 172, 1427–1478 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 3, 209–267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ha, S.-Y., Slemrod, M.: A fast-slow dynamical systems theory for the Kuramoto type phase model. J. Differ. Equ. 251, 2685–2695 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004)

  27. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  28. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)

    Article  ADS  Google Scholar 

  29. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Phys. D 205, 249–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  33. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Hemmen, J.L., Wreszinski, W.F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 72, 145–166 (1993)

    Article  ADS  MATH  Google Scholar 

  35. Verwoerd, M., Mason, O.: A convergence result for the Kuramoto model with all-to-all couplings. SIAM J. Appl. Dyn. Syst. 10, 906–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Watanabe, S., Strogatz, S.H.: Constants of motion for superconducting Josephson arrays. Phys. D 74, 197–253 (1994)

    Article  MATH  Google Scholar 

  39. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of S.-Y. Ha is partially supported by National Research Foundation of Korea Grant (NRF-2017R1A2B2001864) funded by the Korea Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yeon Ryoo.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Lemma 5.3

Appendix A. Proof of Lemma 5.3

In this appendix, we provide a proof of Lemma 5.3. The five conditions we must check are as follows.

$$\begin{aligned} \begin{aligned}&(a)~\gamma \in \left( \frac{1}{2},1\right] , \\&(b)~ \beta \in \left( 0,\cos ^{-1}\Big [\frac{1}{\gamma }-1\Big ]\right) , \\&(c)~\kappa >\frac{D(\Omega )}{2\sin \beta (\gamma \cos \beta -(1-\gamma ))}, \\&(d)~\text{ either }\quad R_0\ge \gamma +(1-\gamma )\cos \beta \quad \text{ or }\quad 2\gamma +\frac{D(\Omega )^2}{4\kappa ^2R_0^2}\frac{1}{1-\cos \beta }\le 1+R_0,\\&(e)~\frac{D(\Omega )}{\kappa }< \frac{(2\gamma -1)^{3/2}}{\sqrt{2\gamma }}\frac{2-\gamma }{\sqrt{\gamma /2}+(1-\gamma )}. \end{aligned} \end{aligned}$$
(A.1)

Recall our choice for \(\gamma \) and \(\beta \):

$$\begin{aligned}&\gamma (R_0)= {\left\{ \begin{array}{ll} 0.5+\frac{0.35}{0.94}R_0&{} 0<R_0\le 0.94,\\ 1-\frac{5}{2}(1-R_0)&{} 0.94<R_0\le 1, \end{array}\right. }\\&\quad \text{ and } \quad \cos \beta (R_0)= {\left\{ \begin{array}{ll} 1-\frac{0.4}{0.94}R_0&{}0<R_0\le 0.94, \\ 0.6&{}0.94<R_0\le 1. \end{array}\right. } \end{aligned}$$

We verify conditions (A.1) for the two cases separately

$$\begin{aligned} R_0\le 0.94 \quad \text{ and } \quad R_0> 0.94. \end{aligned}$$

1.1 A.1 Case A\((R_0\le 0.94)\)

We verify the conditions in (A.1) one by one.

  • Step 1 (Verification of relation (A.1)-(a)): Since \(\gamma (R_0)\) is a linear function of \(R_0\), we have

    $$\begin{aligned} 0.5=\gamma (0)< \gamma (R_0)\le \gamma (0.94)=0.85. \end{aligned}$$
  • Step 2 (Verification of relation (A.1)-(b)): First, note the equivalence:

    $$\begin{aligned} \text{(A.1)-(b) } \quad \Longleftrightarrow \quad \cos \beta (R_0)>\frac{1}{\gamma (R_0)}-1 \quad \Longleftrightarrow \quad \gamma (R_0)(1+\cos \beta (R_0))-1>0. \end{aligned}$$

    On the other hand, we use the choices for \(\gamma (R_0)\) and \(\cos \beta (R_0)\) to see

    $$\begin{aligned} \gamma (R_0)(1+\cos \beta (R_0))-1&=\left( 0.5+\frac{0.35}{0.94}R_0\right) \left( 2-\frac{0.4}{0.94}R_0\right) -1\\&=\frac{0.5}{0.94}R_0-\frac{0.14}{0.94^2}R_0^2\\&=\frac{0.36}{0.94}R_0+\frac{0.14}{0.94}R_0\left( 1-\frac{R_0}{0.94}\right) >0, \end{aligned}$$

    where the final statement holds because of \(0<R_0\le 0.94\).

  • Step 3 (Verification of relation (A.1)-(c)): Note that

    $$\begin{aligned} \begin{aligned} \text{(A.1) }-(c)\quad \Longleftarrow&\quad 1.6\frac{D(\Omega )}{R_0^2}\ge \frac{D(\Omega )}{2\sin \beta (R_0)(\gamma (R_0)\cos \beta (R_0)-(1-\gamma (R_0)))}\\ \Longleftrightarrow&\quad 1.6\frac{1}{R_0^2}\ge \frac{1}{2\sqrt{1-\cos \beta (R_0)}\sqrt{1+\cos \beta (R_0)}(\gamma (R_0)(1+\cos \beta (R_0))-1)}\\ \Longleftrightarrow&\quad 1.6\frac{1}{R_0^2}\ge \frac{1}{2\sqrt{\frac{0.4}{0.94}R_0}\sqrt{2-\frac{0.4}{0.94}R_0}(\frac{0.5}{0.94}R_0-\frac{0.14}{0.94^2}R_0^2)}\\ \Longleftrightarrow&\quad 3.2\frac{1}{R_0^2}\sqrt{\frac{0.4}{0.94}R_0}\sqrt{2-\frac{0.4}{0.94}R_0}(\frac{0.5}{0.94}R_0-\frac{0.14}{0.94^2}R_0^2)\ge 1\\ \Longleftrightarrow&\quad 3.2\sqrt{\frac{0.4}{0.94}}\sqrt{2-\frac{0.4}{0.94}R_0}\left( \frac{0.5}{0.94\sqrt{R_0}}-\frac{0.14}{0.94^2}\sqrt{R_0}\right) \ge 1. \end{aligned} \end{aligned}$$

    In the final inequality, each and every term on the LHS is a positive decreasing function of \(R_0\) on (0, 0.94], so the LHS as a whole is a decreasing function of \(R_0\) on (0, 0.94]. At \(R_0=0.94\), the LHS is 1.0430..., which is larger than 1. We thus conclude that (A.1)-(c) is true.

  • Step 4 (Verification of relation (A.1)-(d)): We use the second condition of (A.1)-(d).

    $$\begin{aligned} \text{(A.1) }-(d)\quad \Longleftarrow&\quad 2\gamma (R_0)+\frac{D(\Omega )^2}{4\kappa ^2R_0^2}\frac{1}{1-\cos \beta (R_0)}\le 1+R_0\\ \Longleftarrow&\quad 2\gamma (R_0)+\frac{R_0^2}{4\cdot 1.6^2}\frac{1}{1-\cos \beta (R_0)}\le 1+R_0\\ \Longleftrightarrow&\quad 2\left( 0.5+\frac{0.35}{0.94}R_0\right) +\frac{R_0^2}{4\cdot 1.6^2}\frac{1}{\frac{0.4}{0.94}R_0}\le 1+R_0\\ \Longleftrightarrow&\quad \frac{0.7}{0.94}R_0+\frac{0.94}{4\cdot 1.6^2\cdot 0.4}R_0\le R_0\\ \Longleftrightarrow&\quad \frac{0.7}{0.94}+\frac{0.94}{4\cdot 1.6^2\cdot 0.4}=0.9742\cdots \le 1. \end{aligned}$$

    Hence (A.1)-(d) is true.

  • Step 5 (Verification of relation (A.1)-(e)): We have

    $$\begin{aligned} \text{(A.1) }-(e)\quad \Longleftarrow&\quad \frac{1}{1.6}R_0^2\le \frac{(2\gamma (R_0)-1)^{3/2}}{\sqrt{2\gamma (R_0)}}\frac{2-\gamma (R_0)}{\sqrt{\gamma (R_0)/2}+(1-\gamma (R_0))}\\ \Longleftrightarrow&\quad \frac{1}{1.6}R_0^2\le \frac{\left( \frac{0.7}{0.94}R_0\right) ^{3/2}}{\sqrt{1+\frac{0.7}{0.94}R_0}}\frac{1.5-\frac{0.35}{0.94}R_0}{\sqrt{0.25+\frac{0.35}{1.88}R_0}+0.5-\frac{0.35}{0.94}R_0}\\ \Longleftrightarrow&\quad \frac{1}{1.6}\left( \frac{0.94}{0.7}\right) ^{3/2}\frac{\sqrt{R_0}\sqrt{1+\frac{0.7}{0.94}R_0}\left( \sqrt{0.25+\frac{0.35}{1.88}R_0}+0.5-\frac{0.35}{0.94}R_0\right) }{1.5-\frac{0.35}{0.94}R_0}\le 1. \end{aligned}$$

    The LHS of the final inequality has logarithmic derivative

    $$\begin{aligned}&\frac{1}{2R_0}+\frac{\frac{0.7}{0.94}}{2(1+\frac{0.7}{0.94}R_0)}+\frac{\frac{\frac{0.35}{1.88}}{2\sqrt{0.25+\frac{0.35}{1.88}R_0}}-\frac{0.35}{0.94}}{\sqrt{0.25+\frac{0.35}{1.88}R_0}+0.5-\frac{0.35}{0.94}R_0}+\frac{\frac{0.35}{0.94}}{1.5-\frac{0.35}{0.94}R_0}\\&\quad \ge \frac{1}{2\cdot 0.94}+0+\frac{\frac{\frac{0.35}{1.88}}{2\sqrt{0.25+\frac{0.35}{1.88}\cdot 0.94}}-\frac{0.35}{0.94}}{\sqrt{0.25+\frac{0.35}{1.88}R_0}+0.5-\frac{0.35}{0.94}R_0}+0\\&\quad = \frac{1}{2\cdot 0.94}-\frac{0.35}{0.94}\cdot \frac{1-\frac{1}{4\sqrt{0.425}}}{\sqrt{0.25+\frac{0.35}{1.88}R_0}+0.5-\frac{0.35}{0.94}R_0}\\&\quad \ge \frac{1}{2\cdot 0.94}-\frac{0.35}{0.94}\cdot \frac{1-\frac{1}{4\sqrt{0.425}}}{\sqrt{0.25+\frac{0.35}{1.88}\cdot 0}+0.5-\frac{0.35}{0.94}\cdot 0.94}\\&\quad =\frac{1}{2\cdot 0.94}-\frac{0.35}{0.94}\cdot \frac{1-\frac{1}{4\sqrt{0.425}}}{0.65}\\&\quad =0.178\cdots >0, \end{aligned}$$

    and thus is an increasing function of \(R_0\) on (0, 0.94]. At \(R_0=0.94\), this LHS has value 0.857..., which is less than 1. Hence (A.1)-(e) is true.

1.2 A.2 Case B \((R_0 > 0.94)\)

Again, we verify each relation one by one.

  • Step 1 (Verification of relation (A.1)-(a)): Since \(\gamma (R_0)\) is a linear function of \(R_0\),

    $$\begin{aligned} 0.85=\gamma (0.94)< \gamma (R_0)\le \gamma (1)=1. \end{aligned}$$
  • Step 2 (Verification of relation (A.1)-(b)): Note the equivalence

    $$\begin{aligned} \text{(A.1) }-(b)\Longleftrightarrow \cos \beta (R_0)>\frac{1}{\gamma (R_0)}-1 \Longleftrightarrow \quad \gamma (R_0)(1+\cos \beta (R_0))-1>0, \end{aligned}$$

    and we can calculate

    $$\begin{aligned} \gamma (R_0)(1+\cos \beta (R_0))-1&=\left( 1-2.5(1-R_0)\right) \cdot 1.6-1=0.6-4(1-R_0)\\&>0.6-4\cdot 0.06=0.36>0, \end{aligned}$$

    where we have used \(0.94<R_0\le 1\) in the first inequality.

  • Step 3 (Verification of relation (A.1)-(c)): We have

    $$\begin{aligned} \text{(A.1) }-(c)\quad \Longleftarrow&\quad 1.6\frac{D(\Omega )}{R_0^2}\ge \frac{D(\Omega )}{2\sin \beta (R_0)(\gamma (R_0)\cos \beta (R_0)-(1-\gamma (R_0)))}\\ \Longleftrightarrow&\quad 1.6\frac{1}{R_0^2}\ge \frac{1}{2\cdot 0.8\cdot (0.6-4(1-R_0))}\\ \Longleftrightarrow&\quad 2.56\frac{4R_0-3.4}{R_0^2}\ge 1. \end{aligned}$$

    In the final inequality, the LHS has derivative

    $$\begin{aligned} 2.56\left( -\frac{4}{R_0^2}+\frac{6.8}{R_0^3}\right)>2.56\left( -\frac{4}{0.94^2}+6.8\right) =2.2731\cdots >0, \end{aligned}$$

    and thus is an increasing function of \(R_0\) on (0.94, 1]. At \(R_0=0.94\), the LHS is 1.0430..., which is larger than 1. We thus conclude that (A.1)-(c) is true.

  • Step 4 (Verification of relation (A.1)-(d)): This time, we verify the first statement of (A.1)-(d), which is

    $$\begin{aligned} \text{(A.1) }-(d)-(i)\quad \Longleftrightarrow&\quad R_0\ge \gamma (R_0)+(1-\gamma (R_0))\cos \beta (R_0)\\ \Longleftrightarrow&\quad R_0\ge (1-2.5(1-R_0))+2.5(1-R_0)\cdot 0.6\\ \Longleftrightarrow&\quad 0\ge 0. \end{aligned}$$
  • Step 5 (Verification of relation (A.1)-(e)): We have

    $$\begin{aligned} \text{(A.1) }-(e)\quad \Longleftarrow&\quad \frac{1}{1.6}R_0^2\le \frac{(2\gamma (R_0)-1)^{3/2}}{\sqrt{2\gamma (R_0)}}\frac{2-\gamma (R_0)}{\sqrt{\gamma (R_0)/2}+(1-\gamma (R_0))}\\ \Longleftrightarrow&\quad \frac{1}{1.6}R_0^2\le \frac{\left( 5R_0-4\right) ^{3/2}}{\sqrt{5R_0-3}}\frac{3.5-2.5R_0}{\sqrt{1.25R_0-0.75}+2.5(1-R_0)}\\ \Longleftrightarrow&\quad \frac{1}{1.6}\frac{R_0^2\sqrt{5R_0-3}(\sqrt{1.25R_0-0.75}+2.5(1-R_0))}{\left( 5R_0-4\right) ^{3/2}(3.5-2.5R_0)}\le 1. \end{aligned}$$

    The LHS of the final inequality has, on (0.94, 1), logarithmic derivative

    $$\begin{aligned}&\frac{2}{R_0}+\frac{5}{2(5R_0-3)}+\frac{\frac{1.25}{2\sqrt{1.25R_0-0.75}}-2.5}{\sqrt{1.25R_0-0.75}+2.5(1-R_0)}-\frac{3}{2}\cdot \frac{5}{5R_0-4}+\frac{2.5}{3.5-2.5R_0}\\&\quad \le \frac{2}{0.94}+\frac{5}{2(5\cdot 0.94-3)}+\frac{\frac{1.25}{2\sqrt{1.25\cdot 0.94-0.75}}-2.5}{\sqrt{1.25R_0-0.75}+2.5(1-R_0)}-\frac{3}{2}\cdot \frac{5}{5\cdot 1-4}\\&\qquad +\frac{2.5}{3.5-2.5\cdot 1}\\&\quad = \frac{2}{0.94}+\frac{5}{3.4}-\frac{2.5-\frac{1.25}{2\sqrt{0.425}}}{\sqrt{1.25R_0-0.75}+2.5(1-R_0)}-7.5+2.5\\&\quad \le \frac{2}{0.94}+\frac{5}{3.4}-\frac{2.5-\frac{1.25}{2\sqrt{0.425}}}{\sqrt{1.25\cdot 1-0.75}+2.5(1-0.94)}-5\\&\quad \le \frac{2}{0.94}+\frac{5}{3.4}-\frac{2.5-\frac{1.25}{2\sqrt{0.425}}}{\sqrt{0.5}+0.15}-5\\&\quad =-3.20\cdots <0, \end{aligned}$$

    and thus is a decreasing function of \(R_0\) on (0.94, 1]. At \(R_0=0.94\), this LHS has value 0.857..., which is less than 1. Hence (A.1)-(e) is true.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Ryoo, SY. Asymptotic Phase-Locking Dynamics and Critical Coupling Strength for the Kuramoto Model. Commun. Math. Phys. 377, 811–857 (2020). https://doi.org/10.1007/s00220-020-03786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03786-1

Navigation