Skip to main content
Log in

Uniform Energy Bound and Morawetz Estimate for Extreme Components of Spin Fields in the Exterior of a Slowly Rotating Kerr Black Hole II: Linearized Gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This second part of the series treats spin \(\pm 2\) components (or extreme components), that satisfy the Teukolsky master equation, of the linearized gravity in the exterior of a slowly rotating Kerr black hole. For each of these two components, after performing a first-order differential operator once and twice, the resulting equations together with the Teukolsky master equation itself constitute a linear spin-weighted wave system. An energy and Morawetz estimate for spin \(\pm 2\) components is proved by treating this system. This is a first step in a joint work (Andersson et al. in Stability for linearized gravity on the Kerr spacetime, arXiv:1903.03859, 2019) in addressing the linear stability of slowly rotating Kerr metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. \(\kappa \) is one of the spin coefficients used in [12, Chapter 1.8].

  2. This application of the first-order differential operators to the spin \(\pm 2\) components is closely related to Chandrasekhar transformation [13].

  3. We should distinguish among these different notations that a tilde means that there is no extra \(r^{-\delta }\) power in the coefficients of \(\partial _r\)- and \(\partial _{t^*}\)-derivatives term and a subscript \(\text {deg}\) means there is the trapping degeneracy in the trapped region, and vice versa.

  4. In fact, the N–P components should be viewed as sections of a complex line bundle. Therefore, “smooth” means that these components and their derivatives to any order with respect to \((\partial _{t^*},\partial _r, {\nabla \!\!\!/}_1, {\nabla \!\!\!/}_2, {\nabla \!\!\!/}_3)\) are continous.

  5. The dependence of \({\hat{\epsilon }}_1\) in \(C_1\) is not needed for spin \(-2\) component.

  6. Note that in Schwarzschild case, \(\varLambda _{m\ell }=A+s+s^2\), with A being the separation constant in [44].

  7. A solution to (27a) or (27b) is integrable if for every integer \(n\ge 0\), every multi-index \(0\le |i|\le n\) and any \(r'>r_+\), we have

    $$\begin{aligned} \sum _{0\le |i|\le n}\int _{{\mathcal {D}}(-\infty ,\infty )\cap \{r=r'\}}(|\partial ^i \psi |^2+|\partial ^i F|^2)<\infty . \end{aligned}$$
    (168)

    .

  8. The authors in [17] missed one term \(-4aMrm\omega \) in the Equation (33), but what is used thereafter is the Schrödinger equation (34) in Section 9 which is correct. Therefore, the validity of the proof will not be influenced by the missing term.

  9. \(r_{\infty }^*\) is chosen based on \(\tau \) from the property of finite speed of propagation.

References

  1. Aksteiner, S., Andersson, L., Bäckdahl, T.: New identities for linearized gravity on the Kerr spacetime. Phys. Rev. D 99(4), 044043 (2019)

    ADS  MathSciNet  Google Scholar 

  2. Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime, arXiv:1903.03859 (2019)

  3. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182(3), 787–853 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Andersson, L., Blue, P.: Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. J. Hyperb. Differ. Equ. 12(04), 689–743 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Andersson, L., Blue, P., Wang, J.: Morawetz estimate for linearized gravity in Schwarzschild, arXiv:1708.06943 (2017)

  6. Andersson, L., Ma, S., Paganini, C., Whiting, B.F.: Mode stability on the real axis. J. Math. Phys. 58(7), 072501 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zurich (2007)

    MATH  Google Scholar 

  8. Blue, P.: Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperb. Differ. Equ. 5(04), 807–856 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold I: local decay estimates. Adv. Differ. Equ. 8(5), 595–614 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Blue, P., Soffer, A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256(1), 1–90 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, Reprint of the 1992 edition. MR1647491 (1998)

  13. Chandrasekhar, S.: On the equations governing the perturbations of the Schwarzschild black hole. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 343, The Royal Society, pp. 289–298 (1975)

  14. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations, arXiv:1601.06467 (2016)

  15. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the Case \(| a|\ll M \). Ann. PDE 5(1), 2 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases \(|a|\ll m\) or axisymmetry, arXiv:1010.5132 (2010)

  18. Dafermos, M., Rodnianski, I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremalcase \(|a|< m\). Ann. Math. 183(3), 787–913 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Fackerell, E.D., Ipser, J.R.: Weak electromagnetic fields around a rotating black hole. Phys. Rev. D. 5, 2455–2458 (1972)

    ADS  Google Scholar 

  21. Finster, F., Smoller, J.: Linear stability of the non-extreme Kerr black hole. Adv. Theor. Math. Phys. 21(8), 1991–2085 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Häfner, D., Hintz, P., Vasy, A.: Linear stability of slowly rotating Kerr black holes, arXiv:1906.00860 (2019)

  23. Hawking, S.W., Hartle, J.B.: Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283–290 (1972)

    ADS  MathSciNet  Google Scholar 

  24. Hung, P.-K., Keller, J., Wang, M.-T.: Linear stability of Schwarzschild spacetime: the Cauchy problem of metric coefficients, arXiv:1702.02843 (2017)

  25. Kay, B.S., Wald, R.M.: Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation \(2\)-sphere. Class. Quantum Grav. 4(4), 893 (1987)

    ADS  MATH  Google Scholar 

  26. Kerr, R.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11(5), 237 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kinnersley, W.: Type D vacuum metrics. J. Math. Phys. 10(7), 1195–1203 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Klainerman, S., Szeftel, J.: Global nonlinear stability of Schwarzschild spacetime under polarized perturbations, arXiv:1711.07597 (2017)

  29. Luk, J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 5(3), 553–625 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ma, S.: Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field. Ann. Henri Poincaré (2020). https://doi.org/10.1007/s00023-020-00884-7

    MathSciNet  MATH  Google Scholar 

  31. Metcalfe, J., Tataru, D., Tohaneanu, M.: Pointwise decay for the Maxwell field on black hole space-times, arXiv:1411.3693 (2014)

  32. Moncrief, V.: Gravitational perturbations of spherically symmetric systems. I. The exterior problem. Ann. Phys. 88(2), 323–342 (1974)

    ADS  MathSciNet  Google Scholar 

  33. Morawetz, C.S.: Time decay for the nonlinear Klein–Gordon equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 306, The Royal Society, pp. 291–296 (1968)

  34. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3(3), 566–578 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Newman, E., Penrose, R.: Errata: an approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 4(7), 998–998 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Pasqualotto, F.: The spin \(\pm 1\) Teukolsky equations and the Maxwell system on Schwarzschild, arXiv:1612.07244 (2016)

  37. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108(4), 1063 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Schwarzschild, K.: Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 424–434 (1916), 1916

  39. Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Ann. Henri Poincaré 16, 289–345 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Starobinsky, A.A., Churilov, S.M.: Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zh. Eksp. Teor. Fiz 65(3), 3–11 (1973)

    ADS  Google Scholar 

  41. Sterbenz, J., Tataru, D.: Local energy decay for Maxwell fields part I: spherically symmetric black-hole backgrounds. Int. Math. Res. Not. 2015, 11 (2015)

    MATH  Google Scholar 

  42. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011(2), 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Teukolsky, S.A., Press, W.H.: Perturbations of a rotating black hole. III—Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443–461 (1974)

    ADS  Google Scholar 

  44. Teukolsky, S.A.: Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29(16), 1114 (1972)

    ADS  Google Scholar 

  45. Whiting, B.F.: Mode stability of the Kerr black hole. J. Math. Phys.D 30(6), 1301–1305 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Zerilli, F.J.: Effective potential for even-parity Regge–Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24(13), 737 (1970)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Lars Andersson, Pieter Blue and Claudio Paganini for many helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Ma.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Commutators of a Spin-Weighted Wave Operator and rYr (or rVr)

Commutators of a Spin-Weighted Wave Operator and rYr (or rVr)

Proposition 11

Let \({\mathbf {L}}_s\) be a spin-weighted wave operator

$$\begin{aligned} {\mathbf {L}}_s={}&\varSigma \Box _g+\tfrac{2is\cos \theta }{\sin ^2 \theta }\partial _{\phi }-s^2\cot ^2 \theta -s^2. \end{aligned}$$
(302)

For any scalar \(\psi \) with spin weight s, we have the following commutators

$$\begin{aligned}{}[{\mathbf {L}}_s, -rVr]\psi ={}&-\tfrac{2(r^2-3Mr+2a^2)}{r^3}r^2V(rV(r\psi )) +\tfrac{4}{r}(a^2\partial _t +a\partial _{\phi })(rV(r\psi ))\nonumber \\&-\tfrac{2(r^2-Mr+3a^2)}{r^2}rV(r\psi ) -2(a^2\partial _t +a\partial _{\phi })\psi +\tfrac{2Mr-4a^2}{r}\psi , \end{aligned}$$
(303)
$$\begin{aligned} \psi ={}&-\tfrac{2(r^2-3Mr+2a^2)}{r^3}r^2Y(rY(r\psi )) +\tfrac{4}{r}(a^2\partial _t +a\partial _{\phi })(rY(r\psi ))\nonumber \\&+\tfrac{2(r^2-Mr+3a^2)}{r^2}rY(r\psi ) +2(a^2\partial _t +a\partial _{\phi })\psi +\tfrac{2Mr-4a^2}{r}\psi . \end{aligned}$$
(304)

Proof

Expand \({\mathbf {L}}_s \psi \) into the form of

$$\begin{aligned} {\mathbf {L}}_s\psi ={}&\left( \tfrac{1}{\sin {\theta }} \partial _{\theta }(\sin \theta \partial _{\theta })+\tfrac{\partial _{\phi \phi }^2}{\sin ^2\theta } +2a\partial _{t\phi }^2+a^2 \sin ^2 \theta \partial _{tt}^2 +\tfrac{2is\cos \theta }{\sin ^2 \theta }\partial _{\phi }-\tfrac{s^2}{\sin ^2 \theta }\right) \psi \nonumber \\&-rY\left( \tfrac{\varDelta }{r^2} V(r\psi )\right) +\tfrac{a^2\varDelta }{r^2(r^2+a^2)}(V+Y)(r\psi ) +\tfrac{2ar}{r^2+a^2}\partial _{\phi }\psi -2ias\cos \theta \partial _t \psi \nonumber \\&-\left[ \tfrac{2Mr^3+a^2r^2-4a^2Mr+a^4}{(r^2+a^2)^2}+r\sqrt{r^2+a^2}\partial _r\left( \tfrac{a^2 \varDelta }{r^2 (r^2+a^2)^{3/2}}\right) \right] \psi . \end{aligned}$$
(305)

We prove the commutator relation (303) below, and the commutator (304) is manifest from (303) by letting \(t\rightarrow -t\) and \(\phi \rightarrow -\phi \) (hence \(\partial _t\rightarrow -\partial _t\), \(\partial _{\phi } \rightarrow -\partial _{\phi }\) and \(V \rightarrow -Y\)). We calculate the commutators between each term and \(-rVr\). The first line of (305) commutes with \(-rVr\), and hence their commutators vanish. The last term on the second line commutes with \(-rVr\), and for the other terms on the second line, we have

$$\begin{aligned} &[rY\left( \tfrac{\varDelta }{r^2} Vr\right) , -rVr]\psi \nonumber \\ ={}&r^3 [Y,V]\left( \tfrac{\varDelta }{r^2}V(r\psi )\right) -2r^2 V\left( \tfrac{\varDelta }{r^2}V(r\psi )\right) \nonumber \\&- 2r\tfrac{\varDelta }{r^2}V(r\psi ) -rY\left( r^2 \partial _r\left( \tfrac{\varDelta }{r^2}\right) V(r\psi )\right) , \end{aligned}$$
(306)
$$\begin{aligned} & [\tfrac{a^2\varDelta }{r^2(r^2+a^2)}(V+Y)r,-rVr]\psi \nonumber \\ ={}&-\tfrac{a^2\varDelta }{r^2+a^2}[Y,V](r\psi ) +\tfrac{2a^2r\varDelta }{r^2(r^2+a^2)} V(r\psi )\nonumber \\&+r\partial _r\left( \tfrac{a^2\varDelta }{r(r^2+a^2)}\right) Y(r\psi ) +r\partial _r\left( \tfrac{a^2\varDelta }{r^3(r^2+a^2)}\right) r^2V(r\psi ), \end{aligned}$$
(307)
$$\begin{aligned} & [\tfrac{2ar}{r^2+a^2}\partial _{\phi },-rVr]\psi ={}-\tfrac{2ar^2(r^2-a^2)}{(r^2+a^2)^2}\partial _{\phi }\psi . \end{aligned}$$
(308)

The commutator of the last line with \(-rVr\) equals

$$\begin{aligned} &-r^2\partial _r\left( \tfrac{2Mr^3+a^2r^2-4a^2Mr+a^4}{(r^2+a^2)^2}+r\sqrt{r^2+a^2}\partial _r\left( \tfrac{a^2 \varDelta }{r^2 (r^2+a^2)^{3/2}}\right) \right) \psi \nonumber \\ ={}&-r^2 \partial _r\left( \tfrac{2(Mr-a^2)}{r^2}\right) \psi \nonumber \\ ={}&\tfrac{2Mr-4a^2}{r}\psi . \end{aligned}$$
(309)

It remains to calculate the commutator [YV] which is present in both (306) and (307). For a general field \(\psi \),

$$\begin{aligned}{}[Y,V]\psi ={}&-2\partial _r\left( \tfrac{r^2+a^2}{\varDelta }\right) \partial _t \psi -2\partial _r\left( \tfrac{a}{\varDelta }\right) \partial _{\phi }\psi \nonumber \\ ={}&\tfrac{4M(r^2-a^2)}{\varDelta ^2}\partial _t\psi +\tfrac{4a(r-M)}{\varDelta ^2}\partial _{\phi }\psi . \end{aligned}$$
(310)

Collecting the above discussions and calculations, we arrive at

$$\begin{aligned} &[{\mathbf {L}}_s, -rVr]\psi \nonumber \\ ={}&-\left( \tfrac{2\varDelta }{r}-\tfrac{2(Mr-a^2)}{r}\right) V(rV(r\psi )) +\tfrac{4}{r}(a^2\partial _t +a\partial _{\phi })(rV(r\psi ))\nonumber \\&-\tfrac{2(r^2-Mr+3a^2)}{r^2}rV(r\psi ) -2a^2\partial _t \psi -\tfrac{2a^3(3r^2+a^2)+2ar^2(r^2-a^2)}{(r^2+a^2)^2}\partial _{\phi }\psi \nonumber \\&+\tfrac{2Mr-4a^2}{r}\psi . \end{aligned}$$
(311)

The relation (303) follows by calculating the coefficient of each single term in the above equation. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S. Uniform Energy Bound and Morawetz Estimate for Extreme Components of Spin Fields in the Exterior of a Slowly Rotating Kerr Black Hole II: Linearized Gravity. Commun. Math. Phys. 377, 2489–2551 (2020). https://doi.org/10.1007/s00220-020-03777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03777-2

Navigation