Skip to main content
Log in

Source Identities and Kernel Functions for the Deformed Koornwinder–van Diejen Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider generalizations of the BC-type relativistic Calogero–Moser–Sutherland models, comprising of the rational, trigonometric, hyperbolic, and elliptic cases, due to Koornwinder and van Diejen, and construct an explicit eigenfunction for these generalizations. In special cases, we find the various kernel function identities, and also a Chalykh–Feigin–Sergeev–Veselov type deformation of these operators and their corresponding kernel functions, which generalize the known kernel functions for the Koornwinder–van Diejen models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout the paper, we write \(A_{N}(\mathbf {x} ; \mathbf {g}, \lambda ,\beta )\), etc., to indicate the arguments \(\mathbf {x}\) and the coupling parameters.

  2. We use the standard definition for the odd Jacobi theta function \(\vartheta _{1}(x) := \vartheta _{1}(x |\tau ) \) (\(\mathfrak {I}(\tau )>0\)) found in [WW40]; see also (23).

  3. The function s(x) in (50) should then be replaced with the odd Jacobi theta function \(\vartheta _{1}(x)\).

  4. These Gamma functions are the same as those Gamma functions used in [AHL14].

References

  1. Atai, F., Hallnäs, M., Langmann, E.: Source identities and kernel functions for deformed (quantum) Ruijsenaars models. Lett. Math. Phys. 104(7), 811–835 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Atai, F., Langmann, E.: Series solutions of the non-stationary Heun equation. SIGMA Symmetry Integr. Geom. Methods Appl. 14(11), 32 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Calogero, F.: Solution of the one-dimensional \(N\)-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    MathSciNet  Google Scholar 

  4. Chalykh, O., Feigin, M., Veselov, A.: New integrable generalizations of Calogero–Moser quantum problem. J. Math. Phys. 39(2), 695–703 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Feigin, M., Silantyev, A.: Generalized Macdonald–Ruijsenaars systems. Adv. Math. 250, 144–192 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Hallnäs, M., Langmann, E.: A unified construction of generalized classical polynomials associated with operators of Calogero–Sutherland type. Constr. Approx. 31(3), 309–342 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Komori, Y., Hikami, K.: Quantum integrability of the generalized elliptic Ruijsenaars models. J. Phys. A 30(12), 4341–4364 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Komori, Y., Noumi, M., Shiraishi, J.: Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA Symmetry Integr. Geom. Methods Appl. 5(54), 40 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type \(BC\). In: Hypergeometric Functions on Domains Of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), vol. 138 Contemp. Math., pp. 189–204. Amer. Math. Soc., Providence, RI (1992)

  10. Langmann, E.: Source identity and kernel functions for elliptic Calogero–Sutherland type systems. Lett. Math. Phys. 94(1), 63–75 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Langmann, E.: Explicit solution of the (quantum) elliptic Calogero–Sutherland model. Ann. Henri Poincaré 15, 755–791 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Langmann, E., Takemura, K.: Source identity and kernel functions for Inozemtsev-type systems. J. Math. Phys. 53(8), 082105 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Mimachi, K.: A duality of MacDonald–Koornwinder polynomials and its application to integral representations. Duke Math. J. 107(2), 265–281 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Olshanetsky, M.A., Perelomov, A.M.: Quantum completely integrable systems connected with semi-simple Lie algebras. Lett. Math. Phys. 2(1), 7–13 (1977/78)

  15. Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities. Commun. Math. Phys. 110(2), 191–213 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38(2), 1069–1146 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Ruijsenaars, S.N.M.: Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type III. The Heun case. SIGMA 5(049), 21 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Ruijsenaars, S.N.M.: Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I. The eigenfunction identities. Commun. Math. Phys. 286(2), 629–657 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Sen, D.: A multispecies Calogero–Sutherland model. Nucl. Phys. B 479(3), 554–574 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Sergeev, A.N.: The Calogero operator and Lie superalgebras. Teoret. Mat. Fiz. 131(3), 355–376 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Sutherland, B.: Exact results for a quantum many body problem in one-dimension. II. Phys. Rev. A 5, 1372–1376 (1972)

    Google Scholar 

  22. Sergeev, A.N., Veselov, A.P.: Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Adv. Math. 192(2), 341–375 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Sergeev, A.N., Veselov, A.P.: \(BC_\infty \) Calogero–Moser operator and super Jacobi polynomials. Adv. Math. 222(5), 1687–1726 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Sergeev, A.N., Veselov, A.P.: Deformed Macdonald–Ruijsenaars operators and super Macdonald polynomials. Commun. Math. Phys. 288(2), 653–675 (2009)

    MathSciNet  MATH  Google Scholar 

  25. van Diejen, J.F.: Integrability of difference Calogero–Moser systems. J. Math. Phys. 35(6), 2983–3004 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, fourth edn. Cambridge University Press, London (1940)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Langmann for suggesting this project, and M. Noumi and S.N.M. Ruijsenaars for helpful discussions. This work has been supported by the Japan Society for the Promotion of Science and the author is a JSPS International Research Fellow (Grant Nos. P17768 and 17F17768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Atai.

Additional information

Communicated by H. T. Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atai, F. Source Identities and Kernel Functions for the Deformed Koornwinder–van Diejen Models. Commun. Math. Phys. 377, 2191–2216 (2020). https://doi.org/10.1007/s00220-020-03753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03753-w

Navigation