Skip to main content
Log in

A Rigorous Mathematical Construction of Feynman Path Integrals for the Schrödinger Equation with Magnetic Field

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A Feynman path integral formula for the Schrödinger equation with magnetic field is rigorously mathematically realized in terms of infinite dimensional oscillatory integrals. We show (by the example of a linear vector potential) that the requirement of the independence of the integral on the approximation procedure forces the introduction of a counterterm to be added to the classical action functional. This provides a natural explanation for the appearance of a Stratonovich integral in the path integral formula for both the Schrödinger and heat equation with magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Feynman commented this by his often quoted statement “one feels as Cavalieri must have felt calculating the volume of a pyramids before the invention of the calculus”.

  2. The first step it is given by:

    $$\begin{aligned} {\mathbb {E}}\left[ \omega (s_1)^4\cdots \omega (s_{\tilde{p}})^4\right]&={\mathbb {E}}\left[ \omega (s_1)^4\cdots (\omega (s_{\tilde{p}})-\omega (s_{\tilde{p}-1})+\omega (s_{\tilde{p}-1}))^4 \right] \\&= {\mathbb {E}}\left[ \omega (s_1)^4\cdots \omega (s_{\tilde{p}-1})^8 \right] +{\mathbb {E}}\left[ \omega (s_1)^4\cdots \omega (s_{\tilde{p}-1})^6(\omega ( s_{\tilde{p}})-\omega ( s_{\tilde{p}-1}))^4\right] \\&\quad + 6\cdot {\mathbb {E}}\left[ \omega (s_1)^4\cdots \omega (s_{\tilde{p}-1})^6(\omega ( s_{\tilde{p}})-\omega ( s_{\tilde{p}-1}))^2\right] , \end{aligned}$$

    then we proceed in the same way for \(\tilde{p}\) steps.

References

  1. Albeverio, S., Boutet De Monvel-Berthier, A.M., Brzeźniak, Z.: The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals. Math. Nachr. 182(1), 21–65 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Brzeźniak, Z.: Finite-dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions. J. Funct. Anal. 113(1), 177–244 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Brzeźniak, Z.: Oscillatory integrals on Hilbert spaces and Schrödinger equation with magnetic fields. J. Math. Phys. 6(5), 2135–2156 (1995)

    ADS  MATH  Google Scholar 

  4. Albeverio, S., Cangiotti, N., Mazzucchi, S.: Generalized Feynman path integrals and applications to higher-order heat-type equations. Exp. Math. 36(3–4), 406–429 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Albeverio, S., Høegh-Krohn, R.: Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics. Invent. Math. 40(1), 59–106 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Albeverio, S., Høegh-Krohn, R., Mazzucchi, S.: Mathematical Theory of Feynman Path Integrals-An Introduction. 2nd corrected and enlarged edition. Lecture Notes in Mathematics, Vol. 523. Springer, Berlin (2008)

  7. Albeverio, S., Mazzucchi, S.: Generalized Fresnel integrals. Bull. Sci. Math. 129(1), 1–23 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Albeverio, S., Mazzucchi, S.: Feynman path integrals for polynomially growing potentials. J. Funct. Anal. 221(1), 83–121 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Albeverio, S., Mazzucchi, S.: A unified approach to infinite-dimensional integration. Rev. Math. Phys. 28(2), 1650005–43 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Anderson, L., Driver, B.K.: Finite dimensional approximations to Wiener measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Broderix, K., Hundertmark, D., Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12(2), 181–225 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Cameron, R.H.: A family of integrals serving to connect the Wiener and Feynman integrals. J. Math. Phys. 39(1–4), 126–140 (1960)

    MathSciNet  MATH  Google Scholar 

  13. Cartier, P., DeWitt-Morette, C.: Functional integration. J. Math. Phys. 41(6), 4154–4187 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)

    MATH  Google Scholar 

  15. Doss, H.: Sur une résolution stochastique de l’équation de Schrödinger á coefficients analytiques. Commun. Math. Phys. 73(3), 247–264 (1980)

    ADS  MATH  Google Scholar 

  16. Duistermaat, J.J.: Oscillatory integrals, Lagrange inversions and unfolding of singularities. Commun. Pure Appl. Math. 27(2), 207–281 (1984)

    Google Scholar 

  17. Elworthy, D., Truman, A.: Feynman maps, Cameron-Martin formulae and anharmonic oscillators. Ann. Inst. H. Poincaré Phys. Théor. 41(2), 115–142 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Feynman, R.: Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. Dover Publications Inc, Mineola (2010)

    MATH  Google Scholar 

  20. Fujiwara, D.: Rigorous Time Slicing Approach to Feynman Path Integrals. Springer, Tokyo (2017)

    MATH  Google Scholar 

  21. Fujiwara, D., Tsuchida, T.: The time slicing approximation of the fundamental solution for the Schrödinger equation with electromagnetic fields. J. Math. Soc. Jpn. 49(2), 299–327 (1997)

    MATH  Google Scholar 

  22. Fulling, S.A.: Pseudodifferential operators, covariant quantization, the inescapable Van Vleck–Morette determinant, and the R/6 controversy. Int. J. Mod. Phys. D 5(6), 597–608 (1996)

    ADS  MathSciNet  Google Scholar 

  23. Gaveau, B., Mihokova, E., Roncadelli, M., Schulman, L.S.: Path integral in a magnetic field using the Trotter product formula. Am. J. Phys. 72(3), 385–388 (2004)

    ADS  Google Scholar 

  24. Gaveau, B., Schulman, L.S.: Sensitive terms in the path integral: ordering and stochastic options. J. Math. Phys. 30(9), 2019–2022 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gaveau, B., Vauthier, J.: Intégrales oscillantes stochastiques: l’équation de Pauli. J. Funct. Anal. 44(3), 388–400 (1981)

    MATH  Google Scholar 

  26. Gross, L.: Abstract Wiener spaces. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 31–42 (1965)

  27. Gross, L.: Measurable functions on Hilbert spaces. Trans. Am. Math. Soc. 105(3), 372–390 (1962)

    MathSciNet  MATH  Google Scholar 

  28. Grothaus, M., Riemann, F.: A fundamental solution to the Schrödinger equation with Doss potentials and its smoothness. J. Math. Phys. 58(3), 053506 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Güneysu, B.: Heat kernels in the context of Kato potentials on arbitrary manifolds. Potential Anal. 46(1), 119–134 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Güneysu, B., Keller, M., Schmidt, M.: A Feynman–Kac–Itō formula for magnetic Schrödinger operators on graphs. Probab. Theory Relat. Fields 165(1–2), 365–399 (2016)

    MATH  Google Scholar 

  31. Haba, Z.: Stochastic interpretation of Feynman path integral. J. Math. Phys. 35(12), 6344 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Hida, T., Hui-Hsiung, K., Potthoff, J., Streit, W.: White Noise An Infinite Dimensional Calculus. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  33. Hinz, M., Röckner, M., Teplyaev, A.: Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces. Stoch. Process. Appl. 123(12), 4373–4406 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition. Classics in Mathematics. Springer, Berlin (2003)

  35. Ichinose, W.: On the formulation of the Feynman path integral through broken line paths. Commun. Math. Phys. 189(3), 17–33 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ichinose, W.: On the Feynman path integral for the magnetic Schrödinger equation with a polynomially growing electromagnetic potential. Rev. Math. Phys. 32(1), 2050003 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Ichinose, W., Aoki, T.: Notes on the Cauchy problem for the self-adjoint and non-self-adjoint Schrödinger equations with polynomially growing potentials. J. Pseudo-Differ. Oper. Appl. (2019). https://doi.org/10.1007/s11868-019-00301-6

  38. Ikeda, N., Manabe, S.: Van Vleck-Pauli formula for Wiener integrals and Jacobi fields. In: Itō’s Stochastic Calculus and Probability Theory. Edited by: N. Ikeda et al. Springer, Tokyo (1996)

  39. Itô, K.: Wiener integral and Feynman integral. In: Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability (Univ. of Calif. Press), vol. 2, pp. 227–238 (1961)

  40. Itô, K.: Generalized uniform complex measures in the Hilbertian metric space with their applications to the Feynman path integral. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Univ. of Calif. Press), vol. 2(1), pp. 145–161 (1967)

  41. Johnson, G.W., Lapidus, M.L.: The Feynman integral and Feynman’s operational calculus. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  42. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  43. Kolokoltsov, V.N.: Semiclassical Analysis for Diffusion and Stochastic Processes. LNM 1724. Springer, Berlin (2000)

  44. Kolokoltsov, V.N.: Schrödinger operators with singular potentials and magnetic fields. Mat. Sb. 194(6), 105–126 (2003)

    MathSciNet  Google Scholar 

  45. Kumano-go, N., Fujiwara, D.: Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations. Bull. Sci. Math. 132(4), 313–357 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Kuo, H.H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin-Heidelberg-New York (1975)

  47. Leinfelder, H., Simader, C.G.: Schrödingers operators with singular magnetic vector potentials. Math. Z. 176(1), 1–19 (1981)

    MathSciNet  MATH  Google Scholar 

  48. Loss, M., Thaler, B.: Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions. Commun. Math. Phys. 186(1), 95–107 (1997)

    ADS  MATH  Google Scholar 

  49. Mazzucchi, S.: Mathematical Feynman Path Integrals and Applications. World Scientific Publishing, Singapore (2009)

    MATH  Google Scholar 

  50. Mazzucchi, S.: Functional-integral solution for the Schrödinger equation with polynomial potential: a white noise approach. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 14(4), 675–688 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Mazzucchi, S.: Infinite dimensional oscillatory integrals with polynomial phase and applications to higher-order heat-type equations. Potential Anal. 49(2), 1–15 (2017)

    MathSciNet  Google Scholar 

  52. Murray, J.D.: Asymptotic Analysis. Clarendon Press, Oxford (1974)

    MATH  Google Scholar 

  53. Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math. Phys. 5(3), 332–343 (1964)

    ADS  MATH  Google Scholar 

  54. Nicola, F.: Convergence in \(L^p\) for Feynman path integrals. Adv. Math. 294, 384–409 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Osborn, T.A., Papiez, L., Corns, R.: Constructive representations of propagators for quantum systems with electromagnetic fields. J. Math. Phys. 28(1), 103–123 (1987)

    ADS  MathSciNet  Google Scholar 

  56. Ramer, R.: On nonlinear transformations of Gaussian measures. J. Funct. Anal. 15(2), 166–187 (1974)

    MathSciNet  MATH  Google Scholar 

  57. Rezende, J.: The method of stationary phase for oscillatory integrals on Hilbert spaces. Commun. Math. Phys. 101(2), 187–206 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991)

    MATH  Google Scholar 

  59. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981). With new supplementary section, Dover (2005)

  60. Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  61. Streater, R.: Euclidean Quantum Mechanics and Stochastic Integrals. pp. 371–393 in LNM 851. Springer, Berlin (1980)

  62. Sunada, T.: A discrete analogue of periodic magnetic Schrödinger operators. A Geometry of the spectrum (Seattle, WA, 1993), pp. 283–299, Contemp. Math., 173, Amer. Math. Soc., Providence, Rhode Island (1994)

  63. Thomas, E.: Projective limits of complex measures and martingale convergence. Probab. Theory Relat. Fields 119(4), 579–588 (2001)

    MathSciNet  MATH  Google Scholar 

  64. Truman, A.: Feynman path integrals and quantum mechanics as \(\hbar \rightarrow 0\). J. Math. Phys. 17(10), 1852–1862 (1976)

    ADS  MathSciNet  Google Scholar 

  65. Truman, A.: The Feynman maps and the Wiener integral. J. Math. Phys. 19(8), 1742–1750 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Tsuchida, T.: Remarks on Fujiwara’s stationary phase method on a space of large dimension with a phase function involving electromagnetic field. Nagoya Math. J. 136, 157–189 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Yajima, K.: Schrödinger evolution equations with magnetic fields. J. Anal. Math. 56(1), 29–76 (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

The first named author is very grateful to Elisa Mastrogiacomo and Stefania Ugolini for invitations to University of Insubria, Varese, and Universitá degli studi, Milano, that greatly facilitated our scientific cooperation. Also our participations to workshops in Trento, organized by Stefano Bonaccorsi and Sonia Mazzucchi, in 2017, and in Rome, organized by Alessandro Teta, in 2018 gave us an excellent opportunity of advancing our joint research and we are very grateful for these opportunities. The third named author gratefully acknowledges the hospitality of the Hausdorff Center and the University of Bonn, as well as the support of the Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mazzucchi.

Additional information

Communicated by M. Hairer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 2

Appendix A: Proof of Lemma 2

Let us consider the sequence of random variables \(\{g_n\}\) defined in (48), namely:

$$\begin{aligned} g_n (\omega )= \sum _{j=0}^{n-1} a(\sqrt{i\hbar }\omega (s_j))\left( \omega (s_{j+1})-\omega (s_j) \right) , \qquad \omega \in C_t \end{aligned}$$

and the stochastic integral

$$\begin{aligned} G (\omega )= \int _0^t a(\sqrt{i\hbar }\omega (s)) d\omega (s), \end{aligned}$$

where \(s_j=\frac{jt}{n}\) and a is the Fourier transform of a complex bounded measure on \({\mathbb {R}}\) with compact support contained in the ball \(B_R\) with radius \(R \in {\mathbb {R}}^+\):

$$\begin{aligned} a(\sqrt{i\hbar }\omega (s))=\int _{{\mathbb {R}}}e^{i\sqrt{i\hbar }\xi \omega (s)}d\mu (\xi ). \end{aligned}$$

Without loss of generality, we can restrict ourselves to prove the convergence of \(g_n\) to G in \(L^p(C_t, {\mathbb {P}})\) for p even.

By the BDG inequalities (see, e.g., [42]) we have

$$\begin{aligned} {\mathbb {E}} \left[ | G-g_n |^{2p} \right] \le C_{2p} \cdot {\mathbb {E}} \left[ \left( \sum _{j=0}^{n-1} {\int _{s_j}^{s_{j+1}}} \left| a(\sqrt{i\hbar }\omega (s))-a(\sqrt{i\hbar }\omega (s_j))\right| ^2 ds\right) ^p \right] , \end{aligned}$$
(77)

with \(C_{2p}\) a positive constant. Moreover we have:

$$\begin{aligned}&\left| a(\sqrt{i\hbar }\omega (s))-a(\sqrt{i\hbar }\omega (s_j))\right| ^2 \nonumber \\&\quad = ( \omega (s)-\omega (s_j))^2 \left| \int _0^1 \sqrt{i\hbar }a'\left( \sqrt{i\hbar }\left( \omega (s_j)+u(\omega (s)-\omega (s_j))\right) \right) du \right| ^2 \nonumber \\&\quad = ( \omega (s)-\omega (s_j))^2 \left| i\sqrt{i\hbar } \int _0^1 \int _{{\mathbb {R}}} \xi e^{i\sqrt{i\hbar }\xi (\omega (s_j)+u(\omega (s)-\omega (s_j)))} d\mu (\xi ) du \right| ^2 \\&\quad \le \hbar ({\omega (s)}-{\omega (s_j)})^2 \cdot {\mathcal {G}}(\omega (s),{\omega (s_j)}), \nonumber \end{aligned}$$
(78)

where

$$\begin{aligned}&{\mathcal {G}}(\omega (s),{\omega (s_j)}) \nonumber \\&\quad =\int _0^1 \int _0^1 \int _{{\mathbb {R}}}\int _{{\mathbb {R}}} |\xi _1||\xi _2|e^{-\frac{\sqrt{2}}{2}\xi _1({\omega (s_j)}+u_1({\omega (s)}-{\omega (s_j)}))} e^{-\frac{\sqrt{2}}{2}\xi _1({\omega (s_j)}+u_2({\omega (s)}-{\omega (s_j)}))}\nonumber \\&\qquad d|\mu |(\xi _1)d|\mu |(\xi _2)du_1du_2. \end{aligned}$$
(79)

Using (78), we can write the expectation (77) as follows

(80)

where in the latter inequality we used Schwarz inequality, with

$$\begin{aligned} I_n^1=&\sqrt{{\mathbb {E}}\left[ {\sum _{j_1,\dots , j_p=0}^{n-1}} \left( {\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} {(\omega (s_1)-\omega (s_{j_1}))}^4 \cdots {(\omega (s_p)-\omega (s_{j_p}))}^4 ds_1 \cdots ds_p \right) \right] }, \nonumber \\\end{aligned}$$
(81)
$$\begin{aligned} I_n^2=&\sqrt{{\mathbb {E}}\left[ {\sum _{j_1,\dots , j_p=0}^{n-1}} \left( {\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} {{\mathcal {G}}(\omega (s_1),\omega (s_{j_1}))}^2 \cdots {{\mathcal {G}}(\omega (s_p),\omega (s_{j_p}))}^2 ds_1 \cdots ds_p \right) \right] }.\nonumber \\ \end{aligned}$$
(82)

We will show that \(I_n^1 \rightarrow 0\) for \(n \rightarrow \infty \) and that \(I_n^2\) is uniformly bounded in n.

Let us consider the integral \(I_n^1\) given by (81).

All the expectations \({\mathbb {E}}\left[ {(\omega (s_1)-\omega (s_{j_1}))}^4 \cdots {(\omega (s_p)-\omega (s_{j_p}))}^4 \right] \) can be computed taking into account the coincidences of the indices \(j_r\), with \(r=1,\dots , p\) in the following way:

$$\begin{aligned}&{\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} {\mathbb {E}}\left[ {(\omega (s_1)-\omega (s_{j_1}))}^4 \cdots {(\omega (s_p)-\omega (s_{j_p}))}^4 \right] ds_1 \cdots ds_p \nonumber \\&\quad =\int _0^{\frac{t}{n}} \cdots \int _0^{\frac{t}{n}} {\mathbb {E}}\left[ \omega (s_1)^4 \cdots \omega (s_{p_1})^4 \right] ds_1 \cdots ds_{p_1} \int _0^{\frac{t}{n}} \nonumber \\&\qquad \cdots \int _0^{\frac{t}{n}} {\mathbb {E}}\left[ \omega (s_{p_1+1})^4\cdots \omega (s_{p_1+p_2})^4\right] ds_{{p_1}+1} \cdots ds_{p_1+p_2} \nonumber \\&\qquad \dots \qquad \int _0^{\frac{t}{n}} \cdots \int _0^{\frac{t}{n}} {\mathbb {E}}\left[ \omega (s_{p_{i-1}+1})^4 \cdots \omega (s_{p_{i-1}+p_i})^4 \right] ds_{p_{i-1}+1} \cdots ds_{p_{i-1}+p_i}, \end{aligned}$$
(83)

with \(p_1+p_2+ \cdots + p_i=p\) and we have used that in distribution \({\omega (s)}-{\omega (s_j)} \sim \omega (s-s_j)\). Further, the generic term containing \(\tilde{p}\) factors, for any \(\tilde{p}=1, \dots , p\), can be computed as

$$\begin{aligned}&\int _0^{\frac{t}{n}} \cdots \int _0^{\frac{t}{n}} {\mathbb {E}}\left[ \omega (s_1)^4 \cdots \omega (s_{\tilde{p}})^4 \right] ds_1 \cdots ds_{\tilde{p}}\\&\quad = \tilde{p}! \idotsint \limits _{0<s_1<\cdots<s_{\tilde{p}}<t/n} {\mathbb {E}}\left[ \omega (s_1)^4 \cdots \omega (s_{\tilde{p}})^4\right] ds_1 \cdots ds_{\tilde{p}}. \end{aligned}$$

By a straightforward calculationFootnote 2 we can represent \({\mathbb {E}}\left[ \omega (s_1)^4 \cdots \omega (s_{\tilde{p}})^4 \right] \) as a homogeneous polynomial \(P(s_1,s_2-s_1, \dots , s_{\tilde{p}}-s_{\tilde{p}-1})\) with \(\deg (P)=2\tilde{p}\). We can rewrite it as \(Q(s_1,s_2,\dots , s_{\tilde{p}})\), with \(\deg (Q)=2\tilde{p}\) (its coefficients depending only on \(\tilde{p}\)). Thanks to the change of variables \(t_i=\frac{s_i}{t/n}\), we have

$$\begin{aligned}&\idotsint \limits _{0<s_1<\cdots<s_{\tilde{p}}<t/n}Q(s_1,s_2,\dots , s_{\tilde{p}})ds_1\cdots ds_{\tilde{p}}\\&\quad =\idotsint \limits _{0<t_1<\cdots<t_{\tilde{p}}<1} \left( \frac{t}{n} \right) ^{3\tilde{p}} Q(t_1,t_2,\dots , t_{\tilde{p}}) dt_1 \cdots dt_{\tilde{p}}= C \cdot \left( \frac{t}{n} \right) ^{3\tilde{p}}, \end{aligned}$$

with

$$\begin{aligned} C=\int _{0<t_1< \cdots< t_{\tilde{p}}<1} Q(t_1,t_2,\dots , t_{\tilde{p}}) dt_1 \cdots dt_{\tilde{p}}. \end{aligned}$$

Applying the same argument for all terms in (83) we get

$$\begin{aligned}&{\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} {\mathbb {E}}\left[ {(\omega (s_1)-\omega (s_{j_1}))}^4 \cdots {(\omega (s_p)-\omega (s_{j_p}))}^4 \right] ds_1 \cdots ds_p\\&\quad =C_1 \cdots C_i \cdot \left( \frac{t}{n}\right) ^{3(p_1+\cdots +p_i)}={\widetilde{C}}\cdot \left( \frac{t}{n}\right) ^{3p}, \end{aligned}$$

with \(\tilde{C}=C_1 \cdots C_i\). Thus all the contributions can be estimated by \({\widetilde{K}}_p \cdot \left( \frac{t}{n}\right) ^{3p}\), where \({\widetilde{K}}_p\) is the maximum of the constants computed as \({\widetilde{C}}\). Eventually, using \({\sum _{j_1,\dots , j_p=0}^{n-1}} 1 =n^p\) we get

$$\begin{aligned} I_n^1 \le \sqrt{{\sum _{j_1,\dots , j_p=0}^{n-1}} {\widetilde{K}}_p\cdot \left( \frac{t}{n}\right) ^{3p}}=\sqrt{\left( \frac{t}{n}\right) ^{3p}\cdot {\widetilde{K}}_p \cdot n^p}=\widetilde{{\mathcal {K}}}_p \cdot \frac{t^{\frac{3p}{2}}}{n^p} \xrightarrow {n \rightarrow \infty } 0. \end{aligned}$$

Concerning \(I_n^2\), recalling the definition (79) of \({\mathcal {G}}\), we have to study

$$\begin{aligned} I_n^2=\sqrt{{\sum _{j_1,\dots , j_p=0}^{n-1}} \left( {\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} {\mathbb {E}}\left[ {{\mathcal {G}}(\omega (s_1),\omega (s_{j_1}))}^2 \cdots {{\mathcal {G}}(\omega (s_p),\omega (s_{j_p}))}^2 \right] ds_1 \cdots ds_p \right) }. \end{aligned}$$

By writing explicitly the functions \({\mathcal {G}}(\cdot ,\cdot )\), we get the following bound:

$$\begin{aligned}&\left( I_n^2 \right) ^2\le {\sum _{j_1,\dots , j_p=0}^{n-1}} \left( {\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} \int _0^1 \cdots \int _0^1 \int _{{\mathbb {R}}} \cdots \int _{{\mathbb {R}}} {\mathbb {E}}\left[ \prod _{i=1}^p |\xi _i||\tilde{\xi }_i||\zeta _i||\tilde{\zeta }_i| \right. \right. \\&\quad e^{-\frac{\sqrt{2}}{2}\xi _i(\omega (s_{j_i}))+u_i(\omega (s_i)-\omega (s_{j_i}))} \cdot e^{-\frac{\sqrt{2}}{2}\tilde{\xi }_i(\omega (s_{j_i}))+\tilde{u}_i(\omega (s_i)-\omega (s_{j_i}))} \cdot e^{-\frac{\sqrt{2}}{2}\zeta _i(\omega (s_{j_i}))+v_i(\omega (s_i)-\omega (s_{j_i}))} \\&\quad e^{-\frac{\sqrt{2}}{2}\tilde{\zeta }_i(\omega (s_{j_i}))+\tilde{v}_i(\omega (s_i)-\omega (s_{j_i}))} \Bigg ] d|\mu |(\xi _i)d|\mu |(\tilde{\xi }_i)d|\mu |(\zeta _i)d|\mu |(\tilde{\zeta }_i)du_id\tilde{u}_idv_id\tilde{v}_i \Bigg ). \end{aligned}$$

Since by assumption the support of the measure \(\mu \) is contained in a ball \(B_R\) of radius R, we can bound \(|\xi _i||\tilde{\xi }_i||\zeta _i||\tilde{\zeta }_i|\le R^{4}\) on the support of \(\mu \) obtaining :

$$\begin{aligned}&\left( I_n^2 \right) ^2 \le R^{4p} {\sum _{j_1,\dots , j_p=0}^{n-1}} \left( {\int _{s_{j_1}}^{s_{j_1+1}}}\cdots {\int _{s_{j_p}}^{s_{j_p+1}}} \int _0^1 \cdots \int _0^1 \int _{{\mathbb {R}}} \right. \\&\quad \cdots \int _{{\mathbb {R}}} {\mathbb {E}}\left[ \prod _{i=1}^p e^{-\frac{\sqrt{2}}{2}\omega (s_i)(\xi _i+\tilde{\xi }_i+\zeta _i+\tilde{\zeta }_i)}\right. \\&\quad e^{-\frac{\sqrt{2}}{2}(\omega (s_i)-\omega (s_{j_i}))(\xi _i u_i+\tilde{\xi }_i \tilde{u}_i + \zeta _i v_i + \tilde{\zeta }_i \tilde{v}_i)} \Bigg ] d|\mu |(\zeta _i)d|\mu |(\tilde{\zeta }_i)du_id\tilde{u}_i dv_i d\tilde{v}_i \Bigg ). \end{aligned}$$

We notice that the term under the expectation can be computed as

$$\begin{aligned} \exp \left[ P(s_1, s_{j_1},\dots ,s_p,s_{j_p},\xi _1,\tilde{\xi }_1 , \dots , v_p, \tilde{v}_{p})\right] , \end{aligned}$$

where P is a polynomial function, which maximum \(M_P\) for \(s_i,s_{k_i} \in [0,t]\), \(u_i,\tilde{u}_i,v_i,\tilde{v}_i \in [0,1]\), and \(\xi _i, \tilde{\xi }_i, \zeta _i, \tilde{\zeta }_i \in {{\,\mathrm{supp}\,}}(\mu )\), for all \(i = 1 \dots p\). Finally, by integrating and summing with respects to all variables, we get a finite term of the order \(t^p\cdot |\mu |^{4p}\cdot M\), proving a uniform bound for \(I_n^2\). Hence

$$\begin{aligned} g_n(\omega ) \xrightarrow {L^{2p}(C_t,{\mathbb {P}})} \int _0^t a(\sqrt{i\hbar }\omega (s))d\omega (s), \qquad \omega \in C_t. \end{aligned}$$

Let us consider now the sequence of random variables \(\{h_n\}\) defined by (49) namely:

$$\begin{aligned} h_n(\omega )=\sum _{j=0}^{n-1} \frac{1}{2}\cdot a'( \sqrt{ i\hbar } {\omega (s_j)})({\omega (s_{j+1})}-{\omega (s_j)})^2, \qquad \omega \in C_t, \end{aligned}$$

and set \(a'(\sqrt{i\hbar }\omega (s))\equiv \phi (\omega (s))\), for any \(s \in [0,t]\). Let H be the random variable defined by

$$\begin{aligned} H(\omega ) =\frac{1}{2} \int _0^t \phi (\omega (s)) ds, \qquad \omega \in C_t. \end{aligned}$$

We have:

$$\begin{aligned} H(\omega )-h_n(\omega )&= \frac{1}{2}\sum _{j=0}^{n-1}\left( \int _{s_j}^{s_{j+1}} \phi (\omega (s)) ds - \phi (\omega (s_j))\left( \omega (s_{j+1})-\omega (s_j)\right) ^2\right) \\&=\frac{1}{2}\sum _{j=0}^{n-1}\Bigg ( \int _{s_j}^{s_{j+1}} \phi (\omega (s_j))ds + \int _{s_j}^{s_{j+1}}\phi '(\omega (s_j))(\omega (s)-\omega (s_j))ds\\&\quad +\int _{s_j}^{s_{j+1}} \int _0^1\left( \omega (s)-\omega (s_j))^2 \phi ''(\omega (s_j)+u(\omega (s)\right. \\ {}&\quad \left. -\omega (s_j)))(1-u)\right) duds - \phi (\omega (s_j)) \left( \omega (s_{j+1})-\omega (s_j) \right) ^2 \Bigg ). \end{aligned}$$

Hence

$$\begin{aligned} \Vert H-h_n\Vert _{L^{p}(C_t, {\mathbb {P}})}\le \frac{1}{2}\left( \Vert J_n^1\Vert _{L^{p}(C_t, {\mathbb {P}})}+\Vert J_n^2\Vert _{L^{2p}(C_t, {\mathbb {P}})}+\Vert J_n^3\Vert _{L^{p}(C_t, {\mathbb {P}})}\right) , \end{aligned}$$

where:

$$\begin{aligned} J^1_n(\omega )= & {} \sum _{j=0}^{n-1} \phi (\omega (s_j)) \left( (s_{j+1}-s_j)-(\omega (s_{j+1})-\omega (s_j))^2 \right) ; \\ J_n^2 (\omega )= & {} \sum _{j=0}^{n-1} \phi '(\omega (s_j)) \int _{s_j}^{s_{j+1}} (\omega (s)-\omega (s_j))ds; \\ J^3_n(\omega )= & {} \sum _{j=0}^{n-1}\int _{s_j}^{s_{j+1}} \int _0^1\left( \omega (s)-\omega (s_j))^2 \phi ''(\omega (s_j)+u(\omega (s)-\omega (s_j)))(1-u)\right) duds. \end{aligned}$$

Without loss of generality we can consider the case where the function \(\phi :{\mathbb {R}}\rightarrow {\mathbb {C}}\) is real valued, since the general case follows easily by the inequality \(\Vert J_n^1\Vert _{L^{p}}\le \Vert Re(J_n^1)\Vert _{L^{p}}+\Vert Im(J_n^1)\Vert _{L^{p}}\).

The \(L^{p}\) norm of the function \(J_n^1\) can be estimated as:

$$\begin{aligned}&{\mathbb {E}}[|J^1_n|^{2p}]\\&\quad =\sum _{j_1,...,j_{2p}=0}^{n-1}{\mathbb {E}}\Bigg [ \phi (\omega (s_{j_1}))\cdots \phi (\omega (s_{j_{2p}}))\left( (s_{{j_1}+1}-s_{j_1})-(\omega (s_{j_1+1})-\omega (s_{j_1}))^2 \right) \\&\qquad \cdots \left( (s_{{j_{2p}}+1}-s_{j_{2p}})-(\omega (s_{j_{2p}+1})-\omega (s_{j_{2p}}))^2 \right) \Bigg ]\\&\quad \le (2p)!\sum _{0\le j_1\le ...\le j_{2p}\le n-1}{\mathbb {E}}\Bigg [ \phi (\omega (s_{j_1}))\cdots \phi (\omega (s_{j_{2p}}))\left( (s_{{j_1}+1}-s_{j_1})-(\omega (s_{j_1+1})\right. \\&\qquad - \left. \omega (s_{j_1}))^2 \right) \\&\qquad \cdots \left( (s_{{j_{2p}}+1}-s_{j_{2p}})-(\omega (s_{j_{2p+1}})-\omega (s_{j_{2p}}))^2 \right) \Bigg ]\ . \end{aligned}$$

Since \({\mathbb {E}}[((s_{j+1}-s_{j})-(\omega (s_{j}+1)-\omega (s_j))^2 )]=0\), the sum above contains only the \(n^{2p-1}\)terms where \( j_1\le \dots \le j_{2p-1}=j_{2p}\). Indeed, if \( j_1\le \dots \le j_{2p-1}<j_{2p}\):

$$\begin{aligned}&{\mathbb {E}}\Bigg [\prod _{i=1}^{2p} \phi (\omega (s_{j_i}))\left( (s_{{j_1}+1}-s_{j_1})-(\omega (s_{j_1+1})-\omega (s_j))^2 \right) \Bigg ]\\&\quad ={\mathbb {E}}\Bigg [\prod _{i=1}^{2p-1} \phi (\omega (s_{j_i}))\left( (s_{{j_1}+1}-s_{j_1})-(\omega (s_{j_1+1})-\omega (s_j))^2 \right) \phi (\omega (s_{j_{p}}))\Bigg ] \cdot \\&\qquad {\mathbb {E}}\Bigg [\left( (s_{{j_{2p}}+1}-s_{j_{2p}})-(\omega (s_{j_{2p+1}})-\omega (s_{j_{2p}}))^2 \right) \Bigg ] = 0. \end{aligned}$$

Direct computation shows that all the terms in this sum are of order \( O((s_{{j}+1}-s_{j})^{2p})=O(1/n^{p})\) or less. Indeed, taking into account the possible coincidences of indexes, all the terms are of the form

$$\begin{aligned}&{\mathbb {E}}\Bigg [ \phi (\omega (s_{k_1}))^{p_1}\left( (s_{{k_1}+1}-s_{k_1})-(\omega (s_{k_1+1})-\omega (s_{k_1}))^2 \right) ^{p_1}\cdots \nonumber \\&\quad \cdots \phi (\omega (s_{k_r}))^{p_r}\left( (s_{{k_r}+1}-s_{k_r})-(\omega (s_{k_r+1})-\omega (s_{k_r}))^2 \right) ^{p_r}\Bigg ], \end{aligned}$$
(84)

where \(p_1+\dots +p_r=2p\) and \(k_1<k_2< \cdots <k_r\). By writing \(\phi (x)=\int e^{i\sqrt{i}\xi x} d\nu (\xi )\), \(x \in R\) with \(\nu \) complex Borel measure on \({\mathbb {R}}\) supported in the ball \(B_R\), the integral (84) can be estimates as:

$$\begin{aligned}&\int _{{\mathbb {R}}^{2p}}{\mathbb {E}}\left[ \left( (s_{{k_r}+1}-s_{k_r})-(\omega (s_{k_r+1})-\omega (s_{k_r}))^2 \right) ^{p_r}\right] \nonumber \\&\quad \prod _{\alpha =0}^{r-2}\Bigg ({\mathbb {E}}\left[ e^{i\sqrt{i}(\omega (s_{k_{r-\alpha }})-\omega (s_{k_{r-\alpha -1}+1}))\sum _{l=1}^{\sum _{\beta =0}^\alpha p_{r-\beta }}\xi _l}\right] \Bigg ) \nonumber \\&\Bigg (\prod _{\alpha =1}^{r-1}{\mathbb {E}}\left[ e^{i\sqrt{i}(\omega (s_{k_{r-\alpha }+1})-\omega (s_{k_{r-\alpha }}))\sum _{l=1}^{\sum _{\beta =0}^\alpha p_{r-\beta }}\xi _l}\left( (s_{{k_{r-\alpha }}+1}-s_{k_{r-\alpha }})-(\omega (s_{k_{r-\alpha }+1})\right. \right. \nonumber \\&\quad \left. \left. -\omega (s_{k_{r-\alpha }}))^2 \right) ^{p_{r-\alpha }}\right] \Bigg ) \nonumber \\&{\mathbb {E}}\left[ e^{i\sqrt{i}\omega (s_{k_1})\sum _{l=1}^{2p}\xi _l}\right] d\nu (\xi _1)\dots d\mu (\xi _{2p}). \end{aligned}$$
(85)

Now, since \(\omega (t_1)-\omega (t_2)\) has the same law as \((t_1-t_2)^{\frac{1}{2}}X\), with X a standard normal random variable and for all \(\zeta \in {\mathbb {R}}\), \(0\le t_1\le t_2\), \(k\in {\mathbb {N}}\), we have:

$$\begin{aligned}&{\mathbb {E}}[e^{i\sqrt{i} \zeta (\omega (t_1)-\omega (t_2)) }]=e^{-\frac{i}{2}(t-s)\xi ^2},\\&{\mathbb {E}}[e^{i\sqrt{i} \zeta X }X^{2k}]=H_{2k}(\sqrt{i} \zeta )e^{-\frac{i}{2}\zeta ^2}, \end{aligned}$$

with \(H_n\) denoting the \(n^{th}\) Hermite polynomial. Hence:

$$\begin{aligned}&\Bigg | {\mathbb {E}}\left[ e^{i\sqrt{i}(\omega (s_{k_{r-\alpha }})-\omega (s_{k_{r-\alpha -1}+1})) \sum _{l=1}^{\sum _{\beta =0}^\alpha p_{r-\beta }}\xi _l}\right] \Bigg |=1\\&\Bigg |{\mathbb {E}}\left[ e^{i\sqrt{i}(\omega (s_{k_{r-\alpha }+1})-\omega (s_{k_{r-\alpha }}))\sum _{l=1}^{\sum _{\beta =0}^\alpha p_{r-\beta }}\xi _l}\left( (s_{{k_{r-\alpha }}+1}-s_{k_{r-\alpha }})\right. \right. \\&\qquad \left. \left. -(\omega (s_{k_{r-\alpha }+1})-\omega (s_{k_{r-\alpha }}))^2 \right) ^{p_{r-\alpha }}\right] \Bigg | \\&\quad \le (s_{{k_{r-\alpha }}+1}-s_{k_{r-\alpha }})^{p_{r-\alpha }}P_{\alpha ,p_{r-\alpha }}(\xi _1, \dots ,\xi _{2p}), \end{aligned}$$

with \(P_{\alpha ,p_{r-\alpha }}:{\mathbb {R}}^{2p}\rightarrow {\mathbb {R}}\) suitable polynomial functions. By setting

$$\begin{aligned} M:=\max _{r, p_1, \dots p_r}\prod _{\alpha =1}^{r-1}\max _{\xi _1,\dots \xi _p\in B_R}|P_{\alpha ,p_{r-\alpha }}(\xi _1, \dots ,\xi _p)|, \end{aligned}$$

we get \({\mathbb {E}}[|J^1_n|^{2p}]\le M\frac{t^{2p}}{n}|\nu (B_R)|^{2p}\), obtaining the required convergence result:

$$\begin{aligned} \lim _{n\rightarrow \infty }{\mathbb {E}}[|J^1_n|^{2p}]\rightarrow 0. \end{aligned}$$

The same argument produces an analogous estimate for \({\mathbb {E}}[|J^2_n|^{2p}]\). Indeed, always assuming without loss of generality that the function \(\phi \) is real valued, we get:

$$\begin{aligned}&{\mathbb {E}}[|J^2_n|^{2p}]= \sum _{j_1,\dots ,j_{2p} =0}^{n-1}{\mathbb {E}}\Bigg [ \phi '(\omega (s_{j_1}))\cdots \phi '(\omega (s_{j_{2p}})) \int _{s_{j_1}}^{s_{{j_1}+1}} (\omega (u_1)-\omega (s_{j_1}))du_1\\&\qquad \cdots \int _{s_{j_{2p}}}^{s_{{j_{2p}}+1}} (\omega (u_{2p})-\omega (s_{j_{2p}}))du_{2p} \Bigg ] \\&\quad \le (2p)!\sum _{0\le j_1\le \dots \le j_{2p}\le n-1}^{n-1}{\mathbb {E}}\Bigg [ \phi '(\omega (s_{j_1}))\cdots \phi '(\omega (s_{j_{2p}})) \int _{s_{j_1}}^{s_{{j_1}+1}} (\omega (u_1)\\&\qquad -\omega (s_{j_1}))du_1\\&\qquad \cdots \int _{s_{j_{2p}}}^{s_{{j_{2p}}+1}} (\omega (u_{2p})-\omega (s_{j_{2p}}))du_{2p}\Bigg ] . \end{aligned}$$

Again, since \({\mathbb {E}}[\int _{s_j}^{s_j+1}(\omega (u)-\omega (s_j))du]=0\), we can consider only the \(n^{2p-1} \) terms with \( j_1\le \cdots \le j_{2p-1}= j_{2p}\). All terms have the same structure as the integrals appearing in (80) and by using the same arguments applied for the estimates of integrals (81) and (82), we obtain \(\lim _{n\rightarrow \infty }{\mathbb {E}}[|J^2_n|^{2p}]=0\). Furthermore, the same argument applies also to the term \(J_n^3\), yielding \(\lim _{n\rightarrow \infty }{\mathbb {E}}[|J^3_n|^{2p}]=0\).

Thus

$$\begin{aligned} h_n \xrightarrow {L^{p}(\Omega ,{\mathbb {P}})} \int _{0}^t \phi (\omega (s))ds. \end{aligned}$$

We estimate the last term \(r_n\) (defined in (49)) by means of the Cauchy–Schwarz inequality as follows:

(86)

where

$$\begin{aligned} {\mathcal {F}}({\omega (s_j)},{\omega (s_j)}j)=&\int _0^1\int _0^1 \int _{{\mathbb {R}}}\int _{{\mathbb {R}}}|\kappa _1||\kappa _2| e^{-\frac{\sqrt{2}}{2} \kappa _1 ({\omega (s_j)}+(\omega (s_{j+1})-\omega (s_j))u_1)} \\&e^{-\frac{\sqrt{2}}{2} \kappa _2 ({\omega (s_j)}+(\omega (s_{j+1})-\omega (s_j))u_2)} (1-u_1)^2(1-u_2)^2 du_1du_2d|\mu |(\kappa _1)d|\mu |(\kappa _2). \end{aligned}$$

Both factors appearing in the last line of (86) can be estimated by the same techniques applied in the study of the terms (81) and (82), obtaining \(r_n \xrightarrow {L^p(\Omega ,{\mathbb {P}})}0\).

Eventually, we conclude that the sequence of random variables \(f_n\) defined as

$$\begin{aligned} f_n(\omega )=\int _0^t {\mathbf{a}}\left( \sqrt{ i\hbar } \omega _n(s) \right) \cdot \dot{\omega }_n(s) ds, \end{aligned}$$

converges, as \(n \rightarrow \infty \), in \(L^p(\Omega ,{\mathbb {P}})\) to the random variable f defined as the Stratonovich stochastic integral

$$\begin{aligned} f(\omega )=\int _0^t {\mathbf{a}}( \sqrt{ i\hbar } \omega (s))\circ d\omega (s). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albeverio, S., Cangiotti, N. & Mazzucchi, S. A Rigorous Mathematical Construction of Feynman Path Integrals for the Schrödinger Equation with Magnetic Field. Commun. Math. Phys. 377, 1461–1503 (2020). https://doi.org/10.1007/s00220-020-03744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03744-x

Navigation