Skip to main content
Log in

Entanglement Entropy and Berezin–Toeplitz Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Modern Phys. 80(2), 517–576 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    Article  MathSciNet  Google Scholar 

  3. Abanov, A.G., Ivanov, D.A.: Allowed charge transfers between coherent conductors driven by a time-dependent scatterer. Phys. Rev. Lett. 100, 086602 (2008)

    Article  ADS  Google Scholar 

  4. Basor, E.L.: Trace formulas for Toeplitz matrices with piecewise continuous symbols. J. Math. Anal. Appl. 120(1), 25–38 (1986)

    Article  MathSciNet  Google Scholar 

  5. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegő. In: Journées: Équations aux Dérivées Partielles de Rennes (1975), vol. 34–35. Astérisque, Paris, pp. 123–164 (1976)

  6. Berndtsson, B.O.: Bergman kernels related to Hermitian line bundles over compact complex manifolds. In: Explorations in Complex and Riemannian Geometry, Volume 332 of Contemporary Mathematics, pp. 1–17 (2003)

  7. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: Bulk universality (2008). arxiv:0811.3341

  8. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1–47 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Berline, N.: Getzler, Ezra, Vergne, Michèle: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004). Corrected reprint of the 1992 original

    Google Scholar 

  10. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Berlin (2016)

    Book  Google Scholar 

  11. Basor, E., Widom, H.: Toeplitz and Wiener–Hopf determinants with piecewise continuous symbols. J. Funct. Anal. 50(3), 387–413 (1983)

    Article  MathSciNet  Google Scholar 

  12. Charles, L.: Berezin–Toeplitz operators, a semi-classical approach. Comm. Math. Phys. 239(1–2), 1–28 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Demailly, J.-P: \(L^2\)-estimates for the \(\overline{\partial }\) operator on complex manifolds. Note de cours, Ecole d’été de mathématiques à l’institut Fourier (Grenoble) (1996)

  14. Douglas, M.R., Klevtsov, S.: Bergman kernel from path integral. Commun. Math. Phys. 293(1), 205–230 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. De Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. (2) 65(3), 720–732 (2002)

    Article  MathSciNet  Google Scholar 

  16. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Modern Phys. 82(1), 277–306 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ezawa, Z.F.: Quantum Hall Effects, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008). Field theoretical approach and related topics

    Book  Google Scholar 

  18. Gioev, D.: Szegö limit theorem for operators with discontinuous symbols and applications to entanglement entropy. Int. Math. Res. Not. (2006)

  19. Gioev, D., Klich, I.: Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett. 96(10), 100503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  Google Scholar 

  21. Helling, R., Leschke, H., Spitzer, W.: A special case of a conjecture by Widom with implications to fermionic entanglement entropy. Int. Math. Res. Not. IMRN 7, 1451–1482 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Haroche, S., Raimond, J.-M.: Exploring the Quantum. Oxford Graduate Texts. Oxford University Press, Oxford (2006). Atoms, cavities and photons

    Book  Google Scholar 

  23. Hairer, E., Wanner, G.: Analysis by Its History. Undergraduate Texts in Mathematics. Springer, New York (2008)

    Book  Google Scholar 

  24. Klevtsov, S.: Random normal matrices, Bergman kernel and projective embeddings. J. High Energy Phys. 2014(1), 133 (2014)

    Article  MathSciNet  Google Scholar 

  25. Klevtsov, S.: Geometry and large \(N\) limits in Laughlin states. In: Travaux mathématiques, vol XXIV. Faculty of Science, Technology and Communication University Luxembourg, Luxembourg, pp. 63–127 (2016)

  26. Klich, I.: Lower entropy bounds and particle number fluctuations in a Fermi sea. J. Phys. A 39(4), L85–L91 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kordyukov, Y.A.: On asymptotic expansions of generalized Bergman kernels on symplectic manifolds. Algebra i Analiz 30(2), 163–187 (2018)

    MathSciNet  Google Scholar 

  28. Lindholm, N.: Sampling in weighted \(L^p\) spaces of entire functions in \(\mathbb{C}^n\) and estimates of the Bergman kernel. J. Funct. Anal. 182(2), 390–426 (2001)

    Article  MathSciNet  Google Scholar 

  29. Leblé, T., Serfaty, S.: Fluctuations of two dimensional coulomb gases. Geom. Funct. Anal. 28, 443–508 (2018)

    Article  MathSciNet  Google Scholar 

  30. Leschke, H., Sobolev, A.V., Spitzer, W.: Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature. J. Phys. A 49(30), 30LT04 (2016)

    Article  MathSciNet  Google Scholar 

  31. Leschke, H., Sobolev, A.V., Spitzer, W.: Trace formulas for Wiener–Hopf operators with applications to entropies of free fermionic equilibrium states. J. Funct. Anal. 273(3), 1049–1094 (2017)

    Article  MathSciNet  Google Scholar 

  32. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77(2), 469–481 (1980)

    Article  MathSciNet  Google Scholar 

  33. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  34. Oldfield, J.P.: Two-term Szegö theorem for generalised anti-Wick operators. J. Spectr. Theory 5(4), 751–781 (2015)

    Article  MathSciNet  Google Scholar 

  35. Peschel, I., Eisler, V.: Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 42(50), 504003 (2009)

    Article  MathSciNet  Google Scholar 

  36. Peschel, I.: Calculation of reduced density matrices from correlation functions. J. Phys. A 36(14), L205–L208 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Polterovich, L.: Inferring topology of quantum phase space. J. Appl. Comput. Topol. 2, 61–82 (2018). With an appendix by L. Charles

    Article  MathSciNet  Google Scholar 

  38. Pérez-Esteva, S., Uribe, A.: Szegö Limit theorems for singular Berezin–Toeplitz operators (2018). arXiv:1801.00366

  39. Rodríguez, I.D., Sierra, G.: Entanglement entropy of integer quantum hall states. Phys. Rev. B 80, 153303 (2009)

    Article  ADS  Google Scholar 

  40. Rodríguez, I.D., Sierra, G.: Entanglement entropy of integer quantum hall states in polygonal domains. J. Stat. Mech. Theory Exp. 2010(12), P12033 (2010)

    Article  MathSciNet  Google Scholar 

  41. Serfaty, S.: Systems of points with Coulomb interactions. Eur. Math. Soc. Newsl. No. 110 (2018), 16–21

  42. Simon, B.: Real Analysis. A Comprehensive Course in Analysis, Part 1. American Mathematical Society, Providence (2015). With a 68 page companion booklet

    Book  Google Scholar 

  43. Sobolev, A.V.: Pseudo-differential operators with discontinuous symbols: Widom’s conjecture. Mem. Amer. Math. Soc. 222(1043), vi+104 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Tao, T.: Topics in Random Matrix Theory, Volume 132 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  45. Widom, H.: On a class of integral operators with discontinuous symbol. In: Toeplitz Centennial (Tel Aviv, 1981), Volume 4 of Operator Theory: Advances and Applications. Birkhäuser, Basel-Boston, pp. 477–500 (1982)

  46. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

    Article  Google Scholar 

  47. Zelditch, S., Zhou, P.: Central Limit theorem for spectral Partial Bergman kernels (2017). arXiv:1708.09267

Download references

Acknowledgements

The authors would like to express their warm gratitude to Benoît Douçot for bringing about this collaboration and for pointing out that the IQH entanglement entropy can be computed in terms of the spectrum of a convenient Toeplitz operator. B.E. also thanks Nicolas Regnault and Semyon Klevtsov for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Charles.

Additional information

Communicated by J. Marklof

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Benoit Estienne was supported by Grant Nos. ANR-17-CE30-0013-01 and ANR-16-CE30-0025.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charles, L., Estienne, B. Entanglement Entropy and Berezin–Toeplitz Operators. Commun. Math. Phys. 376, 521–554 (2020). https://doi.org/10.1007/s00220-019-03625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03625-y

Navigation