Skip to main content
Log in

An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study stability times for a family of parameter dependent nonlinear Schrödinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we prove a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Namely g is a holomorphic function on the domain \(\mathbb {T}_a := {\left\{ x\in \mathbb {C}/2\pi \mathbb {Z}\, :\, {\left| {\text {Im}}x\right| }< a\right\} }\) with \(L^2\)-trace on the boundary.

  2. A vector \(\omega \in \mathbb {R}^n\) is called diophantine when it is badly approximated by rationals, i.e. it satisfies, for some \(\gamma ,\tau >0\), \({\left| k\cdot \omega \right| } \ge \gamma {\left| k\right| }^{-\tau },\quad \forall k\in \mathbb {Z}^n{\setminus }{\left\{ 0\right\} }\,\).

  3. Actually \({\mathtt {H}}_{p,s,a}\) also depends on \(\theta \), however, since we think \(\theta \) fixed, we omit to write explicitly the dependence on it.

  4. Indeed, thanks to the immersion property of our norms (see Proposition 6.1 below) the canonical transformation putting the system in Birkhoff Normal Form (see Theorem 8.1 below) in the p-case is simply the restriction to \(H^p\) of the one of the \(p(\delta )\)-case.

  5. Endowed with the scalar product \((u,v)_{{\mathtt {h}}_{\mathtt {w}}}:=\sum _{j\in \mathbb {Z}} \mathtt {w}_j^2 u_j {\bar{v}}_j.\)

  6. As usual given a vector \(k\in \mathbb {Z}^\mathbb {Z}\), \(|k|:=\sum _{j\in \mathbb {Z}}|k_j|\).

  7. Since \(\omega \in {\mathtt {D}_{\gamma ,{q}}}\), w.l.o.g. we may assume that R is in the range of the operator \(\{\sum _{j\in \mathbb {Z}} \omega _j |u_j|^2 ,\cdot \}\).

  8. As usual \({\mathtt {w}}\le {\mathtt {w}}'\) means that \({\mathtt {w}}_j\le {\mathtt {w}}'_j\) for every \(j\in \mathbb {Z}.\)

  9. In the sense that there exists a symplectic change of variables \(\Phi : B_{r}({\mathtt {h}}_{{\mathtt {w}}})\mapsto B_{2r}({\mathtt {h}}_{{\mathtt {w}}})\) such that \( \Psi \circ \Phi u=\Phi \circ \Psi u= u\), \(\forall u\in B_{\frac{7}{8} r}({\mathtt {h}}_{\mathtt {w}})\).

  10. We recall that given a complex Hilbert space H with a Hermitian product \((\cdot ,\cdot )\), its realification is a real symplectic Hilbert space with scalar product and symplectic form given by

    $$\begin{aligned} \langle u,v\rangle = 2\mathrm{Re}(u,v),\quad \omega (u,v)= 2\mathrm{Im}(u,v). \end{aligned}$$
  11. Denoting by \(\mu \) the measure in \(\Omega _{q}\) and by \(\nu \) the product measure on \([-1/2,1/2]^\mathbb {Z}\), then \(\mu (A)= \nu (\omega ^{(-1)}(A))\) for all sets \(A\subset \Omega _{q}\) such that \(\omega ^{(-1)}(A)\) is \(\nu \)-measurable.

  12. Explicitely \(\Pi _{{{\mathcal {K}}}}H:=\sum _{{\varvec{{\alpha }}}={\varvec{{\beta }}}} H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}{u^{\varvec{{\alpha }}}}{\bar{u}^{\varvec{{\beta }}}},\)\(\Pi _{{{\mathcal {R}}}}H:=\sum _{{\varvec{{\alpha }}}\ne {\varvec{{\beta }}}} H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}{u^{\varvec{{\alpha }}}}{\bar{u}^{\varvec{{\beta }}}}.\)

  13. K is the constant in (4.8).

  14. C is defined in (3.3).

  15. We are just using the fact that the ratio \(c^{(j)}_{r,\eta ,{\mathtt {w}}}({\varvec{{\alpha }}},{\varvec{{\beta }}}) / c^{(j)}_{r',\eta ',{\mathtt {w}}'}({\varvec{{\alpha }}},{\varvec{{\beta }}})\) depends on \(r,r'\) only through their ratio.

  16. Note that on the preserving momentum subspace \({{\mathcal {H}}}_{r,\eta }({\mathtt {h}}_{\mathtt {w}})\) coincides with \({{\mathcal {H}}}_{r,0}({\mathtt {h}}_{\mathtt {w}})\) for every \(\eta .\)

  17. R is defined in (1.2) and the constants in “Appendix A”.

  18. i.e. P preserves momentum and we are assuming (1.3).

  19. Using that \((a+b)^{\tau _1}\le 2^{{\tau _1}-1}(a^{\tau _1}+b^{\tau _1})\) for \(a,b\ge 0,\)\({\tau _1}\ge 1.\)

  20. \([\cdot ]\) is the integer part.

  21. Note that \(1\le p-{\mathtt {N}}\tau _\mathtt {S}< 1+\tau _\mathtt {S}.\)

  22. Note that \(1\le p-{\mathtt {N}}\tau _\mathtt {M}< 1+\tau _\mathtt {M}.\)

  23. We still denote it by \(u_0\).

  24. We still denote it by \(u_0\).

  25. Note that the function

    $$\begin{aligned} y \mapsto y-3 \left( 1+ \frac{1}{6} \frac{y}{\ln (y)}\right) \left( \ln y+\ln (1+ \frac{1}{6} \frac{y}{\ln (y)} )\right) \end{aligned}$$

    is positive for \(y\ge 40.\)

  26. Regarding \({C_{\mathtt {Nem}}}\) note that

    $$\begin{aligned} \sup _{x\ge 1} x^p e^{- t x+s x^\theta } \le \exp {\left( (1-\theta ){\left( \frac{s}{t^\theta }\right) }^{\frac{1}{1-\theta }}\right) }\max \left\{ \frac{p }{e (1-\theta )t}, e^{-\frac{t(1-\theta )}{p}}\right\} ^p. \end{aligned}$$
  27. Namely the solution of the equation \(\partial _t \Phi (u,t)=X(\Phi (u,t))\) with initial datum \(\Phi (u,0)=u.\)

  28. We assume \(t_0\) positive, the negative case is analogous.

  29. The case \(T_0<0\) is analogous.

  30. Note that the term \(\left( \frac{1}{i}+\frac{1}{(j-i)}\right) ^q\) for \(j=4\) and \(i=2\) is 1 for every q.

  31. \(\sum _{i\ge 2} 1^{-q}\le 2^{-q}+\int _2^\infty x^{-q}dx\).

  32. Note that by (C.14) the r.h.s. of (C.16) is at least 20.

  33. Using that for \(x,y\ge 0\) and \(0\le c\le 1\) we get \((x+y)^c\le x^c+y^c.\)

  34. Use that \(\ln (x+y)\le \ln x+\ln y\) if \(x,y\ge 2.\)

  35. Recall footnote 34.

  36. Using that \(\ln (1+y)\le 1+\ln y\) for every \(y\ge 1.\)

  37. Using that, for every fixed \(0<{\mathfrak {C}} \le 1,\) we have \({\mathfrak {C}} x\ge \ln x\) for every \(x\ge \frac{2}{{\mathfrak {C}}}\ln \frac{1}{{\mathfrak {C}}} .\)

  38. Assume, e.g. that \(\ell _s\ne 0\), then \(|\partial _{\xi _s}\omega \cdot \ell |\ge s^{-{q}}.\)

References

  1. Bambusi, D.: Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z. 230(2), 345–387 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bambusi, D.: On long time stability in Hamiltonian perturbations of nonresonant linear PDE’s. Nonlinearity 12, 823–850 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234(2), 253–285 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l’ENS 46(2), 299–371 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Berti, M., Delort, J.M.: Almost Global Existence of Solutions for Capillarity–Gravity Water Waves Equations with Periodic Spatial Boundary Conditions. Springer, Berlin (2018)

    MATH  Google Scholar 

  6. Biasco, L., Di Gregorio, L.: A Birkhoff-Lewis type theorem for the nonlinear wave equation. Arch. Ration. Mech. Anal. 196(1), 303–362 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Benettin, G., Fröhlich, J., Giorgilli, A.: A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun. Math. Phys. 119(1), 95–108 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bernier, J., Faou, E., Grébert, B.: Rational normal forms and stability of small solutions to nonlinear schrödinger equations (2018). arXiv:1812.11414

  10. Bounemoura, A., Fayad, B., Niederman, L.: Double exponential stability for generic real-analytic elliptic equilibrium points (2015). Preprint ArXiv : arXiv.org/abs/1509.00285

  11. Bambusi, D., Grébert, B.: Forme normale pour NLS en dimension quelconque. C. R. Math. Acad. Sci. Paris 337(6), 409–414 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Biasco, L., Massetti, J.E., Procesi, M.: Exponential and sub-exponential stability times for the NLS on the circle. Rendiconti Lincei - Matematica e Applicazioni 30(2), 351–364 (2019). https://doi.org/10.4171/RLM/850

    MathSciNet  MATH  Google Scholar 

  14. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6(2), 201–230 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Bourgain, J.: On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Int. Math. Res. Not. 6, 277–304 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Bourgain, J.: On invariant tori of full dimension for 1D periodic NLS. J. Funct. Anal. 229(1), 62–94 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181(1), 39–113 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Cong, H., Liu, J., Shi, Y., Yuan, X.: The stability of full dimensional kam tori for nonlinear Schrödinger equation. preprint (2017). arXiv:1705.01658

  19. Cong, H., Mi, L., Wang, P.: A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation. preprint (2018)

  20. Delort, J.M.: A quasi-linear birkhoff normal forms method. Application to the quasi-linear Klein–Gordon equation on \(\mathtt S^1\). Astérisque, 341 (2012)

  21. Delort, J.-M., Szeftel, J.: Long-time existence for small data nonlinear Klein–Gordon equations on tori and spheres. Int. Math. Res. Not. 37, 1897–1966 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Delort, J.-M., Szeftel, J.: Bounded almost global solutions for non Hamiltonian semi-linear Klein–Gordon equations with radial data on compact revolution hypersurfaces. Ann. Inst. Fourier (Grenoble) 56(5), 1419–1456 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Faou, E., Grébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Anal. PDE 6(6), 1243–1262 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Faou, E., Gauckler, L., Lubich, C.: Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Commun. Partial Differ. Equ. 38(7), 1123–1140 (2013)

    MATH  Google Scholar 

  25. Feola, R., Iandoli, F.: Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.201811_003

  26. Guardia, M., Haus, E., Procesi, M.: Growth of Sobolev norms for the analytic NLS on \({\mathbb{T}}^2\). Adv. Math. 301, 615–692 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. (JEMS) 17(1), 71–149 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Grébert, B., Thomann, L.: Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(3), 455–477 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Guardia, M.: Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential. Commun. Math. Phys. 329(1), 405–434 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Hani, Z.: Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 211(3), 929–964 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Haus, E., Procesi, M.: KAM for beating solutions of the quintic NLS. Commun. Math. Phys. 354(3), 1101–1132 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Kuksin, S., Perelman, G.: Vey theorem in infinite dimensions and its application to KDV. Discrete Contin. Dyn. Syst. 27, 1–24 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori. J. Stat. Phys. 78(5–6), 1607–1617 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Mi, L., Sun, Y., Wang, P.: Long time stability of plane wave solutions to the cubic NLS on torus (2018). preprint

  35. Nikolenko, N.V.: The method of Poincaré normal forms in problems of integrability of equations of evolution type. Russ. Math. Surv. 41(5), 63–114 (1986)

    MATH  Google Scholar 

  36. Yuan, X., Zhang, J.: Long time stability of Hamiltonian partial differential equations. SIAM J. Math. Anal. 46(5), 3176–3222 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The three authors have been supported by the ERC grant HamPDEs under FP7 n. 306414 and the PRIN Variational Methods in Analysis, Geometry and Physics. J.E. Massetti also acknowledges Centro di Ricerca Matematica Ennio de Giorgi and UniCredit Bank R&D group for financial support through the “Dynamics and Information Theory Institute” at the Scuola Normale Superiore. The authors would like to thank D. Bambusi, M. Berti, B. Grebert, Z. Hani and A. Maspero for helpful suggestions and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Biasco.

Additional information

Communicated by C. Liverani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Part 3. Appendices

Appendix A. Constants

In this subsection are listed all the constants appearing along the paper. We first introduce some auxiliary constants. Given \(t,{\sigma },\zeta >0,\)\(p>1/2,\)\(0<\theta <1,\)\(s,{q}\ge 0,\) we setFootnote 26

$$\begin{aligned} {C_{\mathtt {alg}}(p)}:= & {} 2^p\Big (\sum _{i\in \mathbb {Z}} \langle i \rangle ^{-2p}\Big )^{1/2} , \qquad \\ {C_{\mathtt {alg},\mathtt {M}}(p)}:= & {} \sqrt{2}\sqrt{2+\frac{2p+1}{2p-1}} , \\ {C_{\mathtt {Nem}}}(p,s,t):= & {} {C_{\mathtt {alg}}(p)}\big (e^s+\sup _{x\ge 1} x^p e^{- t x+s x^\theta } \big ), \quad \\ {C_{\mathtt {mon}}}(t, {\sigma },p):= & {} 2^{p+1} p^{p} \max \left\{ {\left( 2t\right) }^{p} , {\sigma }^{-p}, 1\right\} , \\ {{\mathcal {C}}_1}:= & {} 28 \,\theta ^{-1}({q}+3) \Big (\frac{2^3\cdot 13 ({q}+3)}{\theta (1-\theta )}\Big )^{\frac{2}{\theta }} \\&{\left( \ln \big (\frac{2^3\cdot 13 ({q}+3)}{\theta (1-\theta )}\big )\right) }^{\frac{2}{\theta }+1} , \quad C_* = 13/(1-\theta ), \\ {{\mathcal {C}}_2}(t,{\sigma },\zeta ):= & {} e^{27(2+{q})}{C_{\mathtt {mon}}}(t,{\sigma },3\zeta ), \\ \tau:= & {} \tau _0(2+{q}),\qquad \tau _0:=15/2, \\ \tau _1:= & {} 2{\left( \tau _0+\frac{3}{2\ln 2}\right) }(2+{q}). \end{aligned}$$

Here are the constants appearing in Theorem 1.1:

$$\begin{aligned} {{\varvec{\delta }}_\mathtt {G}}:= & {} \min \left\{ \frac{\sqrt{R}}{4{C_{\mathtt {alg}}(p)}} ,\ \delta _\mathtt {G}e^{ - \left( \max \left\{ 16(4{{\mathcal {C}}_1})^\theta \eta _\mathtt {G}^{-3}, 2^{\frac{2\theta +4}{4-\theta }} \right\} \right) ^{4/\theta }} \right\} , \quad \\ \mathtt {T}_\mathtt {G}:= & {} \frac{2^4 e {{\varvec{\delta }}_\mathtt {G}}^2}{\gamma },\qquad \text{ where }\\ \delta _\mathtt {G}:= & {} \frac{\sqrt{\gamma R}}{{C_{\mathtt {alg}}(p)}\sqrt{2^{11}e {C_{\mathtt {Nem}}}(p,s-\eta _\mathtt {G},{\mathtt {a}}- a-\eta _\mathtt {G})|f|_{{\mathtt {a}},R}}}, \qquad \\ \eta _\mathtt {G}:= & {} \min \left\{ \frac{{\mathtt {a}}-a}{2},s\right\} . \end{aligned}$$

Here are the constants appearing in Proposition 1.1

$$\begin{aligned} {\tau _\mathtt {S}}:= & {} \tau =\frac{15}{2}(2+q),\qquad \\ {{\varvec{\delta }}_\mathtt {S}}= & {} \min \Big \{\frac{\sqrt{3^\tau \tau \gamma R}}{ 2^{10} e^{2\tau } (\mathtt {k}_\mathtt {S}\tau )^{4\tau } \sqrt{ {C_{\mathtt {Nem}}}(p-{\mathtt {N}}\tau _\mathtt {S},0,{\mathtt {a}}/2)|f|_{{\mathtt {a}},R}} },\frac{\sqrt{R}}{ 2^{\tau +5} }\Big \}\\ {\mathtt {k}}_\mathtt {S}:= & {} \sqrt{\frac{12}{\tau }}\max \left\{ 2 , {\mathtt {a}}^{-1/2}\right\} ,\qquad \\ \mathtt {T}_\mathtt {S}= & {} \frac{ { 2^6 e^{2\tau } 3^{3\tau } (4 \max \left\{ 4 , (1/{\mathtt {a}})\right\} )^{4\tau }}}{ \tau \gamma }. \end{aligned}$$

Here are the constants in Theorem 1.2

$$\begin{aligned} {\tau _\mathtt {M}}:= & {} \tau _1={\left( 15+\frac{3}{\ln 2}\right) }(2+{q}), \qquad {{\varvec{\delta }}_\mathtt {M}}:= \min \Big \{\frac{\sqrt{\tau _1}\delta _\mathtt {M}}{4},\sqrt{\frac{{R}}{ 2^{\tau _1 +8} }} \Big \}, \qquad \\ \mathtt {T}_\mathtt {M}:= & {} \frac{R}{2^{\tau _1+13}\delta _\mathtt {M}^2|f|_{R}}= \frac{2^{3} e 6^{\tau _1} (4^6 e^{27})^{2+{q}}}{ \gamma } \,; \end{aligned}$$

where, recalling 8.2,

$$\begin{aligned} \delta _\mathtt {M}= \frac{\sqrt{ \gamma R }}{\sqrt{2^{17} e 12^{\tau _1} (4^6 e^{27})^{2+{q}}|f|_{R}}}. \end{aligned}$$

Here are the constants appearing in Corollary 1.1:

$$\begin{aligned} \bar{\delta }_\mathtt {S}:= & {} {{\varvec{\delta }}_\mathtt {S}}e^{-\max \{\mathtt {k}_\mathtt {S},\,24 \tau ^2\}}, \qquad {\bar{\delta }}_\mathtt {M}:= \frac{{{\varvec{\delta }}_\mathtt {M}}}{4\tau _1} . \end{aligned}$$

Appendix B. Proofs of the Main Properties of the Norms

Lemma B.1

Let \(0<r_1<r.\) Let E be a Banach space endowed with the norm \(|\cdot |_E\). Let \(X:B_r \rightarrow E\) a vector field satisfying

$$\begin{aligned} \sup _{B_r}|X|_E\le \delta _0. \end{aligned}$$

Then the flow \(\Phi (u,t)\) of the vector fieldFootnote 27 is well defined for every

$$\begin{aligned} |t|\le T:=\frac{r-r_1}{\delta _0} \end{aligned}$$

and \(u\in B_{r_1}\) with estimate

$$\begin{aligned} |\Phi (u,t)-u|_E\le \delta _0 |t|,\qquad \forall \, |t|\le T . \end{aligned}$$

Proof

Fix \(u\in B_{r_1}\). Let us first prove that \(\Phi (u,t)\) exists \(\forall \, |t|\le T.\) Otherwise there exists a timeFootnote 28\(0<t_0<T\) such that \(|\Phi (u,t)|_E<r\) for every \(0\le t<t_0\) but \(|\Phi (u,t_0)|_E=r.\) Then, by the fundamental theorem of calculus

$$\begin{aligned} \Phi (u,t_0)-u=\int _0^{t_0}X(\Phi (u,\tau ))d\tau . \end{aligned}$$
(B.1)

Therefore

$$\begin{aligned} r-r_1\le & {} |\Phi (u,t_0)|_E-|u|_E\le |\Phi (u,t_0)-u|_E\le \int _0^{t_0}|X(\Phi (u,\tau ))|_Ed\tau \le \delta _0 t_0 \\< & {} \delta _0 T= r-r_1, \end{aligned}$$

which is a contradiction. Finally, for every \(|t|\le T,\)

$$\begin{aligned} |\Phi (u,t)-u|_E\le \left| \int _0^{t}|X(\Phi (u,\tau ))|_Ed\tau \right| \le \delta _0 |t|. \end{aligned}$$

\(\square \)

Proof of Lemma 2.1

For brevity we set, for every \(r'>0\)

$$\begin{aligned} |\cdot |_{r'}:=|\cdot |_{r',\eta ,{\mathtt {w}}}. \end{aligned}$$

We use Lemma B.1, with \(E\rightarrow {\mathtt {h}}_{\mathtt {w}}\), \(X\rightarrow X_S\), \(\delta _0\rightarrow (r+\rho ) |S|_{r+\rho },\)\(r\rightarrow r+\rho ,\)\(r_1\rightarrow r,\)\(T\rightarrow 8e.\) Then the fact that the time 1-Hamiltonian flow \(\Phi ^1_S: B_r({\mathtt {h}}_{\mathtt {w}}) \rightarrow B_{r + \rho }({\mathtt {h}}_{\mathtt {w}})\) is well defined, analytic, symplectic follows, since for any \(\eta \ge 0\)

$$\begin{aligned} \sup _{u\in B_{r+\rho }({\mathtt {h}}_{\mathtt {w}})} |X_S|_{{\mathtt {h}}_{\mathtt {w}}} \le (r+\rho ) |S|_{r+\rho }<\frac{\rho }{8 e}. \end{aligned}$$

Regarding the estimate (2.3), again by Lemma B.1 (choosing \(t=1\)), we get

$$\begin{aligned} \sup _{u\in B_{r}({\mathtt {h}}_{\mathtt {w}})} {\left| \Phi ^1_S(u)-u\right| } _{{\mathtt {h}}_{\mathtt {w}}} \le (r+\rho ) |S|_{r+\rho } <\frac{\rho }{8 e} . \end{aligned}$$

Estimates (2.4), (2.5), (2.6) directly follow by (2.7) with \(h=0,1,2,\) respectively and \(c_k=1/k!\), recalling that by Lie series

$$\begin{aligned} H \circ \Phi ^1_S = e^\mathrm{ad_S} H = \sum _{k=0}^\infty \frac{ \mathrm{ad}_S ^k H}{k!} = \sum _{k=0}^\infty \frac{ H^{(k)}}{k!}, \end{aligned}$$

where \( H^{(i)} := \mathrm{ad}_S^i (H)= \mathrm{ad}_S ( H^{(i-1)}) \), \( H^{(0)}:=H \).

Let us prove (2.7). Fix \(k\in {\mathbb {N}},\)\(k>0\) and set

$$\begin{aligned} r_i := r +\rho (1 - \frac{i}{k}) \, \, , \qquad i = 0,\ldots ,k \, . \end{aligned}$$

Note that, by the immersion properties of the norm (recall Remark 2.1)

$$\begin{aligned} |S|_{r_i}\le |S|_{r+\rho },\qquad \forall \, i = 0,\ldots ,k. \end{aligned}$$
(B.2)

Noting that

$$\begin{aligned} 1+\frac{k r_i}{\rho } \, \le k {\left( 1+\frac{r}{\rho }\right) }, \qquad \forall \, i=0,\ldots ,k, \end{aligned}$$
(B.3)

by using k times (2.1) we have

$$\begin{aligned} | {H^{(k)}}|_r= & {} | \{S, {H^{(k-1)}}\} |_r \le 4 (1+\frac{ k r}{\rho }) |{H^{(k-1)}}|_{r_{k-1}}| S|_{r_{k-1}}\\&{\mathop {\le }\limits ^{(B.2)}}|H|_{r+\rho } |S|_{r+\rho }^k 4^k \prod _{i=1}^k (1+\frac{ k r_i}{\rho }) {\mathop {\le }\limits ^{(B.3)}}|H|_{r+\rho } \left( 4k {\left( 1+\frac{r}{\rho }\right) }|S|_{r+\rho } \right) ^k . \end{aligned}$$

Then, using \( k^k\le e^k k!, \) we get

$$\begin{aligned} \left| \sum _{k\ge h} c_k {H^{(k)}}\right| _{r}\le & {} \sum _{k\ge h} |c_k| |{H^{(k)}}|_{r} \le |H|_{r+\rho } \sum _{k\ge h} \left( 4e {\left( 1+\frac{r}{\rho }\right) }|S|_{r+\rho } \right) ^k\\= & {} | H|_{r+\rho } \sum _{k\ge h} (|S|_{r+\rho }/2\delta )^k {\mathop {\le }\limits ^{(2.2)}}2 |H|_{r+\rho } (|S|_{r+\rho }/2\delta )^h. \end{aligned}$$

Finally, if S and H satisfy mass conservation so does each \( \mathrm{ad}_S^k H \), \( k \ge 1 \), hence \( H \circ \Phi ^1_S \) too. \(\square \)

Proof of Lemma 3.1

We first prove (i). It is easily seen that:

$$\begin{aligned} X_{\underline{H}_\eta }^{(j)}(u) = \mathrm{i}\sum _{{\varvec{{\alpha }}},{\varvec{{\beta }}}\in {\mathbb {N}}^\mathbb {Z}} {\left| H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}\right| }{\varvec{{\beta }}}_j e^{\eta |\pi ({\varvec{{\alpha }}}-{\varvec{{\beta }}})|}u^{\varvec{{\alpha }}}{\bar{u}}^{{\varvec{{\beta }}}-e_j}. \end{aligned}$$

Now

$$\begin{aligned} |X_{\underline{H}_\eta }(u) |_{\mathtt {w}}\le |X_{\underline{H}_\eta }(\underline{u}) |_{\mathtt {w}},\quad \underline{u}={\left( |u_j|\right) }_{j\in \mathbb {Z}} \end{aligned}$$

hence, in evaluating the supremum of \(|X_{\underline{H}_\eta }|_{\mathtt {w}}\) over \(|u|_{\mathtt {w}}\le r\) we ca restrict to the case in which \(u=(u_j)_{j\in \mathbb {Z}}\) has all real positive components. Hence

$$\begin{aligned} {\left| H\right| }_{r,\eta ,{\mathtt {w}}} = r^{-1}\sup _{{\left| u\right| }_{\mathtt {w}}\le r} {\left| {\left( \sum ^*{\left| H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}\right| }{\varvec{{\beta }}}_j e^{\eta {\left| \pi ({\varvec{{\alpha }}}-{\varvec{{\beta }}})\right| }} {\left| u\right| }^{{\varvec{{\alpha }}}+ {\varvec{{\beta }}}- e_j} \right) }_{j\in \mathbb {Z}}\right| }_{\mathtt {w}}. \end{aligned}$$

Then

$$\begin{aligned} |H|_{r,\eta ,{\mathtt {w}}} = \frac{1}{2 r} \sup _{|u|_{\mathtt {w}}\le r} {\left| {\left( W^{(j)}_{\eta }(u)\right) }_{j\in \mathbb {Z}}\right| }_{{\mathtt {w}}} \end{aligned}$$
(B.4)

where

$$\begin{aligned} W^{(j)}_{\eta }(u)= \sum ^*{\left| H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}\right| }{\left( {\varvec{{\alpha }}}_j + {\varvec{{\beta }}}_j\right) } e^{\eta {\left| \pi ({\varvec{{\alpha }}}-{\varvec{{\beta }}})\right| }}{u}^{{\varvec{{\alpha }}}+ {\varvec{{\beta }}}- e_j}, \end{aligned}$$

since, by the reality condition 1.23, we have

$$\begin{aligned} \sum ^*{\left| H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}\right| }{\varvec{{\beta }}}_j e^{\eta {\left| \pi ({\varvec{{\alpha }}}-{\varvec{{\beta }}})\right| }} {u}^{{\varvec{{\alpha }}}+ {\varvec{{\beta }}}- e_j} = \sum ^*{\left| H_{{\varvec{{\alpha }}},{\varvec{{\beta }}}}\right| }{\varvec{{\alpha }}}_j e^{\eta {\left| \pi ({\varvec{{\alpha }}}-{\varvec{{\beta }}})\right| }} {u}^{{\varvec{{\alpha }}}+ {\varvec{{\beta }}}- e_j} = \frac{1}{2} W^{(j)}_{\eta }(u). \end{aligned}$$

By the linear map

$$\begin{aligned} L_{r,{\mathtt {w}}}:\ell ^2\rightarrow {\mathtt {h}}_{\mathtt {w}},\qquad y_j\mapsto \frac{r}{{\mathtt {w}}_j}y_j = u_j, \end{aligned}$$

the ball of radius 1 in \(\ell ^2\) is isomorphic to the the ball of radius r in \({\mathtt {h}}_{\mathtt {w}}\), namely \(L_{r,{\mathtt {w}}}(B_1(\ell ^2))=B_r({\mathtt {h}}_{\mathtt {w}}).\) We have

$$\begin{aligned} Y^{(j)}_{H}(y;r,\eta ,{\mathtt {w}}) = \frac{1}{2} W^{(j)}_{\eta }(L_{r,{\mathtt {w}}} y). \end{aligned}$$

Then (i) follows.

In order to prove item (ii) we rely on the fact that, since we are using the \(\eta \)-majorant norm, the supremum over y in the norm is achieved on the real positive cone. Moreover, given \(u,v\in \ell ^2\), if

$$\begin{aligned} |u_j|\le |v_j|,\quad \forall j\in \mathbb {Z}\end{aligned}$$

then \(|u|_{\ell ^2}\le |v|_{\ell ^2}\). \(\square \)

Proof of Lemma 5.4

Let us look at the time evolution of \(|v(t)|_{\mathtt {w}}^2\). By construction and Cauchy-Schwarz inequality

$$\begin{aligned} 2|v(t)|_{\mathtt {w}}\left| \frac{d}{dt} |v(t)|_{\mathtt {w}}\right|= & {} \left| \frac{d}{dt} |v(t)|_{\mathtt {w}}^2 \right| = 2| {\text {Re}}(v,\dot{v})_{{\mathtt {h}}_{\mathtt {w}}}| = 2| {\text {Re}}(v,X_R)_{{\mathtt {h}}_{\mathtt {w}}}|\\\le & {} 2 |v(t)|_{\mathtt {w}}|X_{\underline{R}}|_{\mathtt {w}}\le 2 r |v(t)|_{\mathtt {w}}|R|_{r,\eta ,{\mathtt {w}}}\ \end{aligned}$$

as long as \(|v(t)|_{\mathtt {w}}\le r\); namely

$$\begin{aligned} \left| \frac{d}{dt} |v(t)|_{\mathtt {w}}\right| \le r |R|_{r,\eta ,{\mathtt {w}}} \end{aligned}$$
(B.5)

as long as \(|v(t)|_{\mathtt {w}}\le r.\)

Assume by contradiction that there exists a timeFootnote 29

$$\begin{aligned} 0<T_0<\frac{1}{8|R|_{r,\eta ,{\mathtt {w}}}} \end{aligned}$$

such that

$$\begin{aligned} \Big | |v(t)|_{\mathtt {w}}-|v_0|_{\mathtt {w}}\Big |< \frac{r}{8}, \quad \forall \, 0\le t<T_0,\qquad \mathrm{but}\ \ \Big | |v(T_0)|_{\mathtt {w}}-|v_0|_{\mathtt {w}}\Big |= \frac{r}{8} . \end{aligned}$$
(B.6)

Then

$$\begin{aligned} |v(t)|_{\mathtt {w}}\le |v_0|_{\mathtt {w}}+ \frac{r}{8} < r\, \qquad \quad \forall \, 0\le t\le T_0 . \end{aligned}$$

By (B.5) we get

$$\begin{aligned} \Big | |v(T_0)|_{\mathtt {w}}-|v_0|_{\mathtt {w}}\Big | \le r |R|_{r,\eta ,{\mathtt {w}}} T_0 <\frac{r}{8}, \end{aligned}$$

which contradicts (B.6), proving (5.26). \(\square \)

Proof of Lemma 5.5

We first note that (see, e.g. Lemma 17 of [BDG10]) for \(p >1/2\) and every sequence \(\{x_i\}_{i\in \mathbb {Z}}\), \(x_i\ge 0,\)

$$\begin{aligned} \left( \sum _{i\in \mathbb {Z}} x_i \right) ^2 \le c\sum _{i\in \mathbb {Z}} \left( \frac{\langle i \rangle ^p\langle j-i \rangle ^p}{\langle j \rangle ^p} x_i\right) ^2, \end{aligned}$$

with \(c:=4^p\sum _{i\in \mathbb {Z}} \langle i \rangle ^{-2p}=({C_{\mathtt {alg}}(p)})^2.\) Then

$$\begin{aligned} {\left| f\star g\right| }_{p,s,a}^{2}\le & {} \sum _{j}e^{2s\langle j \rangle ^\theta } e^{2a{\left| j\right| }}\langle j \rangle ^{2p}\Big (\sum _{i}|f_{i}||g_{j-i}|\Big )^2\\\le & {} c \sum _{j}e^{2s\langle j \rangle ^\theta } e^{2a{\left| j\right| }}\sum _{i} \langle i \rangle ^{2p}\langle j-i \rangle ^{2p}|f_{i}|^2 |g_{j-i}|^2\\= & {} c \sum _{i} e^{2s\langle i \rangle ^\theta } e^{2a{\left| i\right| }} \langle i \rangle ^{2p} |f_{i}|^2 \sum _{j} \langle j-i \rangle ^{2p} e^{2s\langle j-i \rangle ^\theta } e^{2a{\left| j-i\right| }} |g_{j-i}|^2\\= & {} c {\left| f\right| }_{p,s,a}^{2} {\left| g\right| }_{p,s,a}^{2}. \end{aligned}$$

Regarding the second estimate, we set

$$\begin{aligned} \phi (i,j):=\frac{\lfloor j \rfloor }{\lfloor i \rfloor \lfloor j-i \rfloor },\qquad \qquad \forall \, i,j\in \mathbb Z . \end{aligned}$$

Note that

$$\begin{aligned} \phi (i,j)=\phi (j,i)=\phi (-i,-j). \end{aligned}$$
(B.7)

We claim that

$$\begin{aligned} \phi (i,j)\le 1. \end{aligned}$$
(B.8)

Indeed by (B.7) we can consider only the case \(j\ge 0.\) Since \( \phi (-|i|,j)\le \phi (|i|,j) \) we can consider only the case \(i\ge 0\). Again by (B.7) we can assume \(j\ge i.\) In particular we can take \(j>i>0,\) (B.8) being trivial in the cases \(j=i,\)\(i=0\). We have

$$\begin{aligned} \phi (i+1,i)=\frac{i+1}{2\lfloor i \rfloor }\le \frac{3}{4}, \qquad \phi (j,1)=\frac{j}{2(j-1)}\le 1. \end{aligned}$$

Then it remains also to discuss the case \(j-2\ge i\ge 2;\) we have

$$\begin{aligned} \phi (i,j)=\frac{j}{i(j-i)}=\frac{1}{i}+\frac{1}{j-i}\le 1, \end{aligned}$$

proving (B.8).

For \(q\ge 0\) set

$$\begin{aligned} c_q:=\sup _{j\in \mathtt {Z}}\sum _{i\in \mathtt {Z}}(\phi (i,j))^q = \sup _{j\ge 0}\sum _{i\in \mathtt {Z}}(\phi (i,j))^q. \end{aligned}$$
(B.9)

We claim that

$$\begin{aligned} c_q\le 4+2\frac{q+1}{q-1}<\infty ,\qquad \forall \, q>1. \end{aligned}$$
(B.10)

Indeed, since \(\lfloor j \rfloor /\lfloor j+1 \rfloor \le 1\) and \(\lfloor j \rfloor /\lfloor j-1 \rfloor \le 3/2\) for \(j\ge 0\), we haveFootnote 30

$$\begin{aligned} c_q= & {} \sup _{j\ge 0} \left( \frac{\lfloor j \rfloor ^q}{2^{q-1}\lfloor j+1 \rfloor ^q} +\frac{1}{2^{q-1}} +\frac{\lfloor j \rfloor ^q}{2^{q-1}\lfloor j-1 \rfloor ^q} + \sum _{i\le -2,\, 2\le i\le j-2,\, i\ge j+2} (\phi (i,j))^q \right) \\\le & {} 2^{3-q} + \sup _{j\ge 0} \left( \sum _{i\ge 2} \frac{\lfloor j \rfloor ^q}{i^q(j+i)^q} +\sum _{2\le i\le j-2}\left( \frac{1}{i}+\frac{1}{(j-i)}\right) ^q +\sum _{i\ge j+2} \frac{\lfloor j \rfloor ^q}{i^q(i-j)^q} \right) \\\le & {} 2^{3-q} +\sum _{i\ge 2} \frac{1}{i^q} +2^{q-1}\sum _{2\le i\le j-2}\left( \frac{1}{i^q}+\frac{1}{(j-i)^q}\right) +\sum _{i\ge j+2} \frac{1}{(i-j)^q}\\\le & {} 4+2\frac{q+1}{q-1}, \end{aligned}$$

using that \((x+y)^q\le 2^{q-1}(x^q+y^q)\) for \(x,y\ge 0\) and thatFootnote 31

$$\begin{aligned} \sum _{i\ge 2} i^{-q}\le \frac{q+1}{2^q(q-1)}. \end{aligned}$$

Note that for every \(q,q_0\ge 0\) we have

$$\begin{aligned} c_{q_0+q}\le c_{q_0} \end{aligned}$$
(B.11)

since

$$\begin{aligned} c_{q_0+q} := \sup _{j\in \mathtt {Z}}\sum _{i\in \mathtt {Z}}(\phi (i,j))^{q_0} (\phi (i,j))^q {\mathop {\le }\limits ^{(B.8)}}\sup _{j\in \mathtt {Z}}\sum _{i\in \mathtt {Z}}(\phi (i,j))^{q_0} =c_{q_0}. \end{aligned}$$

We now note that for \(p >1/2\), \(j\in \mathbb Z\) and every sequence \(\{x_i\}_{i\in \mathbb {Z}}\), \(x_i\ge 0,\) we have by Cauchy-Schwarz inequality

$$\begin{aligned} \left( \sum _{i\in \mathbb {Z}} x_i \right) ^2 = \left( \sum _{i\in \mathbb {Z}} (\phi (i,j))^p (\phi (i,j))^{-p} x_i \right) ^2 \le c_{2p}\sum _{i\in \mathbb {Z}} \left( (\phi (i,j))^{-p} x_i\right) ^2, \end{aligned}$$

with \(c_{2p}\) defined in (B.9). Using the above inequality we get

$$\begin{aligned} \Vert f\star g\Vert _p^{2}\le & {} \sum _{j}\lfloor j \rfloor ^{2p}\Big (\sum _{i}|f_{i}||g_{j-i}|\Big )^2\\\le & {} c_{2p} \sum _{j}\sum _{i} \lfloor i \rfloor ^{2p}\lfloor j-i \rfloor ^{2p}|f_{i}|^2 |g_{j-i}|^2\\= & {} c_{2p} \sum _{i} \lfloor i \rfloor ^{2p} |f_{i}|^2 \sum _{j} \lfloor j-i \rfloor ^{2p} |g_{j-i}|^2\\= & {} c_{2p} \Vert f\Vert _p^2 \Vert g\Vert _p^2. \end{aligned}$$

The proof ends recalling (B.10). \(\square \)

Lemma B.2

(Nemitskii operators). Let \(p> 1/2.\) (i) Fix \(s\ge 0, a_0\ge 0\). Consider a sequence \(F^{(d)}={\left( F^{(d)}_j\right) }_{j\in \mathbb {Z}}\in {\mathtt {h}}_{p,s,a_0}\), \(d\ge 1,\) such that

$$\begin{aligned} \sum _{d=1}^\infty d |F^{(d)}|_{p,s,a_0} R^{d} < \infty \end{aligned}$$
(B.12)

for some \(R>0\).

For \(u={\left( u_j\right) }_{j\in \mathbb {Z}}\) let \({\bar{u}}= {\left( \overline{u_{-j}}\right) }_{j\in \mathbb {Z}}\) and consider the Hamiltonian

$$\begin{aligned} H(u)= \sum _{d=1}^\infty {\left( F^{(d)}\star \underbrace{ u \star \cdots \star u}_{d \,\text{ times }} \star \underbrace{{\bar{u}} \star \cdots \star {\bar{u}}}_{d \,\text{ times }}\right) }_0. \end{aligned}$$

For all \((\eta ,a,r)\) such that \(\eta +a \le a_0\) and \(({C_{\mathtt {alg}}(p)}r)^2 \le R\), we have that \(H\in {{\mathcal {H}}}_{r,\eta }({\mathtt {h}}_{p,s,a})\) and

$$\begin{aligned} |H|_{r,\eta ,{\mathtt {w}}(p,s,a)} \le r^{-1}\sum _{d=1}^\infty d |F^{(d)}|_{p,s,a_0} ({C_{\mathtt {alg}}(p)}r)^{2d-1} <\infty . \end{aligned}$$

(ii) Analogously if \(F^{(d)}\) are constants satisfying

$$\begin{aligned} \sum _{d=1}^\infty d |F^{(d)}| R^{d} < \infty \end{aligned}$$
(B.13)

and \(({C_{\mathtt {alg},\mathtt {M}}(p)}r)^2\le R,\) then \(H\in {{\mathcal {H}}}^{r,p}\) with

$$\begin{aligned} \Vert H\Vert _{r,p} \le 2^p r^{-1}\sum _{d=1}^\infty d |F^{(d)}| ({C_{\mathtt {alg},\mathtt {M}}(p)}r)^{2d-1}<\infty . \end{aligned}$$
(B.14)

Proof

(i) By definition the \(\eta \)-majorant Hamiltonian is

$$\begin{aligned} \underline{H}_\eta = \sum _d \sum _{\begin{array}{c} j_0,j_1\dots , j_{2d}\\ j_0+\sum _{i=1}^{2d} (-1)^{i} j_i = 0 \end{array}} e^{\eta |\pi _{j_1,\dots ,j_{2d}}|}|F^{(d)}_{j_0}| \overline{u_{j_1}} u_{j_2}\overline{u_{j_3}}\dots u_{j_{2d}} \end{aligned}$$

where

$$\begin{aligned} \pi _{j_1,\dots ,j_{2d}} = \sum _{i=1}^{2d} (-1)^{i} j_i= -j_0, \end{aligned}$$

hence

$$\begin{aligned} \underline{H}_\eta = \sum _d {\left( \underline{F}_\eta ^{(d)}\star \underbrace{ u \star \cdots \star u}_{d \,\text{ times }} \star \underbrace{{\bar{u}} \star \cdots \star {\bar{u}}}_{d \,\text{ times }}\right) }_0,\quad \underline{F}^{(d)}_\eta := {\left( e^{\eta |j|}|F^{(d)}_j|\right) }_{j\in \mathbb {Z}}\, \end{aligned}$$

consequently

$$\begin{aligned} X^{(j)}_{\underline{H}_\eta }= \sum _d d {\left( \underline{F}_\eta ^{(d)}\star \underbrace{ u \star \cdots \star u}_{d \,\text{ times }} \star \underbrace{{\bar{u}} \star \cdots \star {\bar{u}}}_{d-1 \,\text{ times }}\right) }_j\, . \end{aligned}$$

Moreover

$$\begin{aligned} |X_{\underline{H}_\eta }|_{p,s,a} \le \sum _d d ({C_{\mathtt {alg}}(p)})^{2d-1}| \underline{F}_\eta ^{(d)}|_{p,s,a} (|u|_{p,s,a} )^{2d-1}. \end{aligned}$$

Since

$$\begin{aligned} |\underline{F}_\eta ^{(d)}|_{p,s,a} = |F^{(d)}|_{s,a+\eta ,p} \le |F^{(d)}|_{ p,s,a_0} \end{aligned}$$

we get

$$\begin{aligned} |X_{\underline{H}_\eta }|_{p,s,a} \le \sum _d d ({C_{\mathtt {alg}}(p)})^{2d-1} |F^{(d)}|_{ p,s,a_0} (|u|_{p,s,a} )^{2d-1}. \end{aligned}$$

Therefore

$$\begin{aligned} |H|_{r,p,\eta }^{(p,s,a,0)} = r^{-1} {\left( \sup _{{\left| u\right| }_{p,s,a}< r} {\left| {X}_{{{\underline{H}}}_\eta }\right| }_{p,s,a} \right) } \le r^{-1}\sum _d d |F^{(d)}|_{p,s,a_0} ({C_{\mathtt {alg}}(p)}r)^{2d-1}<\infty . \end{aligned}$$

(ii) The proof is analogous to point (i). \(\square \)

Proof of Proposition 6.2

We start by Taylor expanding H in homogeneous components. The majorant analiticity implies that for a homogeneous component of degree d one has

$$\begin{aligned} |H^{(d)}|_{r,\eta ,{\mathtt {w}}(p,s,a)}^{}\le |H|_{r,\eta ,,{\mathtt {w}}(p,s,a)}^{}. \end{aligned}$$

Now let us consider the polinomial map (homogeneous of degree \(d-1\)) \(X_{H^{(d)}}: {\mathtt {h}}_{p,s,a} \rightarrow {\mathtt {h}}_{p,s,a}\); as is habitual we identify the polynomial map with the corresponding symmetric multilinear operator \(M^{(d-1)}: {\mathtt {h}}_{p,s,a}^{d-1} \rightarrow {\mathtt {h}}_{p,s,a}\). Since we are in a Hilbert space, one has that

$$\begin{aligned} |\underline{M}|^\mathrm{op}_{p,s,a}&:= \sup _{\begin{array}{c} u_1,\dots u_{d-1}\in {\mathtt {h}}_{p,s,a}\\ |u_i|_{p,s,a}\le 1 \end{array}} | \underline{M}^{(d-1)}(u_1,\dots ,u_{d-1})|_{p,s,a}= \sup _{|u|_{p,s,a}\le 1} | \underline{M}^{(d-1)}(u,\dots ,u)|_{p,s,a} \\&= \sup _{|u|_{p,s,a}\le 1} |X_{\underline{H}^{(d)}}|_{p,s,a} \le r^{-d+2} |H|_{r,\eta ,{\mathtt {w}}(p,s,a)}^{}\end{aligned}$$

for all \(\eta \ge 0\). Now let us compute the tame norm on a homogeneous component, i.e.

$$\begin{aligned} \sup _{|u|_{p_0,s,a}\le r-\rho } \frac{| \underline{M}^{(d-1)}(u^{d-1})|_{p,s,a}}{|u|_{p,s,a}} = \sup _{|u|_{ p_0,s,a}\le r-\rho } \frac{| \underline{N_p}^{(d-1)}(u^{d-1})|_{ p_0,s,a}}{|u|_{p,s,a}} \end{aligned}$$

where

$$\begin{aligned} \underline{N_p}^{(d-1,j)}(u^{d-1})={ \langle j \rangle ^{p-p_0} \sum _{j_1,\dots ,j_{d-1}} |M_{j_1,\dots j_{d-1}}^{(d-1,j)}| u_{j_1}\dots u_{j_{d-1}}} \end{aligned}$$

now setting \(\pi = \sum _i j_i- j \) we have

$$\begin{aligned}&{\underline{N_p}^{(d-1)}(u_1,\dots ,u_{d-1})}\\&\quad \le (d-1) \langle j \rangle ^{p-p_0} \sum _{\begin{array}{c} j_1,\dots ,j_{d-1}: \\ |j_1|\ge |j_i| \end{array}} |M_{j_1,\dots j_{d-1} }^{(d-1,j)}| u_{j_1}\dots u_{j_{d-1}}\\&\quad \le (d-1) \sum _{\begin{array}{c} j_1,\dots ,j_{d-1}: \\ |j_1|\ge |j_i| \end{array}}{\left( \sum _i\langle j_i \rangle +|\pi | \right) }^{p-p_0} |M_{j_1,\dots j_{d-1}}^{(d-1,j)}| u_{j_1}\dots u_{j_{d-1}}\\&\quad \le (d-1)2^{p-p_0} C(\eta ,p)\sum _{\begin{array}{c} j_1,\dots ,j_{d-1} \end{array}} e^{\eta |\pi |} |M_{j_1,\dots j_{d-1}}^{(d-1,j)}| u_{j_1}\dots u_{j_{d-1}} \\&\qquad + (d-1)2^{p-p_0} (d-1)^{p-p_0} \sum _{{j_1,\dots ,j_{d-1}}} |M_{j_1,\dots j_{d-1}}^{(d-1,j)}| \langle j_1 \rangle ^{p-p_0}u_{j_1}\dots u_{j_{d-1}} \end{aligned}$$

which means that for any \(|u|_{ p_0,s,a}\le r-\rho \) one has

$$\begin{aligned}&| \underline{N_p}^{(d-1)}(u^{d-1})|_{ p_0,s,a}\\&\quad \le (d-1)2^{p-p_0} C(\eta ,p) |H^{(d)}|_{r-\rho ,\eta ,{\mathtt {w}}(p_0,s,a)}|u|_{p_0,s,a}\\&\qquad + 2^{p-p_0} (d-1)^{p-p_0+1} |\underline{M}|^\mathrm{op}_{ p_0,s,a} (r-\rho )^{d-2} |u|_{p,s,a}\\&\quad \le (d-1)2^{p-p_0}( C(\eta ,p) + (d-1)^{p-p_0})(1-\frac{\rho }{r})^{d-2} |H|_{r,\eta ,{\mathtt {w}}(p_0,s,a)} |u|_{p,s,a}. \end{aligned}$$

We conclude that

$$\begin{aligned} \sup _{|u|_{ p_0,s,a}\le r }\frac{|X_{\underline{H}}|_{p,s,a}}{|u|_{p,s,a}} \le 2^{p-p_0}|H|_{r,\eta ,{\mathtt {w}}(p_0,s,a)} \sum _{d\ge 2} (d-1){\left( C(\eta ,p) + (d-1)^{p-p_0}\right) }(1-\frac{\rho }{r})^{d-2}\, \end{aligned}$$

and the thesis follows since the right hand side is convergent. \(\square \)

Appendix C. Small Divisor Estimates

Let us start with two techincal lemmata.

Lemma C.1

For \(p,\beta >0\) and \(x_0\ge 0\) we have that

$$\begin{aligned} \max _{x\ge x_0} x^p e^{-\beta x}= {\left\{ \begin{array}{ll} &{}(p/\beta )^p e^{-p} \quad \text{ if } \, \ \ x_0\le p/\beta ,\\ &{}x_0^p e^{-\beta x_0} \quad \text{ if } \, \ \ x_0> p/\beta . \end{array}\right. } \end{aligned}$$

Lemma C.2

Let \(0<a<1\) and \(x_1\ge x_2\ge \cdots \ge x_N\ge 2.\) Then

$$\begin{aligned} \frac{\sum _{1\le \ell \le N} x_\ell }{\prod _{1\le \ell \le N} x_\ell ^a} \le x_1^{1-a}+\frac{2}{a x_1^a}. \end{aligned}$$

Proof

By induction over N. It is obviously true for \(N=1.\) Assume that it hols for N and prove it for \(N+1.\)\(\square \)

Proof of Lemma 6.1

The fact that this (6.5) holds true when \(\pi =0\) is proven in [Bou96b] and [CLSY]. The bound (6.5) is equivalent to proving

$$\begin{aligned} \sum _{l\ge 1} \widehat{n}_l^\theta - 2 \widehat{n}^\theta _1+ \theta {\left| \pi \right| } - {\left( 2 - 2^\theta \right) }\sum _{l\ge 3} \widehat{n}_l^\theta \ge 0. \end{aligned}$$
(C.1)

i.e.

$$\begin{aligned} \sum _{l\ge 2} \widehat{n}_l^\theta - \widehat{n}^\theta _1+ \theta {\left| \pi \right| } - {\left( 2 - 2^\theta \right) }\sum _{l\ge 3} \widehat{n}_l^\theta \ge 0. \end{aligned}$$
(C.2)

Inequality (C.2) then follows from

$$\begin{aligned} f{\left( {\left| \pi \right| }\right) }:= \sum _{l\ge 2} \widehat{n}_l^\theta - {\left( {\left| \pi \right| } + \sum _{l\ge 2}\widehat{n}_l\right) }^\theta + \theta {\left| \pi \right| } - {\left( 2 - 2^\theta \right) }\sum _{l\ge 3} \widehat{n}_l^\theta \ge 0, \end{aligned}$$
(C.3)

which we are now going to prove. We shall show that the function f(x) is increasing in \(x\ge 0\); then the result follows by showing \(f(0) \ge 0\), which is what was proven by Yuan and Bourgain.

We now verify that \(f'(x)\ge 0\). By direct computation we see that

$$\begin{aligned} f'(x) = - \theta {\left( x + \sum _{l\ge 2}\widehat{n}_l\right) }^{\theta - 1} +\theta , \end{aligned}$$

so it suffices to prove that

$$\begin{aligned} 1 \le {\left( x + \sum _{l\ge 2}\widehat{n}_l\right) }^{1 - \theta }, \end{aligned}$$
(C.4)

which is indeed true, since \(\sum _{i\ge 2}\widehat{n}_i\ge \widehat{n}_2\ge 1\) holds, by mass conservation. \(\square \)

Proof of Lemma 7.1

In this subsection we will take

$$\begin{aligned} {\varvec{{\alpha }}},{\varvec{{\beta }}}\in {\mathbb {N}}^\mathbb {Z}\quad \mathrm{with} \quad 1\le |{\varvec{{\alpha }}}|=|{\varvec{{\beta }}}|<\infty . \end{aligned}$$
(C.5)

Given \(u\in \mathbb {Z}^\mathbb {Z}\), with \(|u|<\infty ,\) consider the set

$$\begin{aligned} {\left\{ j\ne 0 ,\quad \text{ repeated }\quad {\left| u_j\right| } \,\text{ times }\right\} }, \end{aligned}$$

where \(D<\infty \) is its cardinality. Define the vector \(m=m(u)\) as the reordering of the elements of the set above such that \(|m_1|\ge |m_2|\ge \dots \ge |m_D|\ge 1.\) Given \({\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\in {\mathbb {N}}^\mathbb {Z},\) with \(|{\varvec{{\alpha }}}|=|{\varvec{{\beta }}}|<\infty \) we consider \(m=m({\varvec{{\alpha }}}-{\varvec{{\beta }}})\) and \(\widehat{n}=\widehat{n}({\varvec{{\alpha }}}+{\varvec{{\beta }}}).\) If we denote by D the cardinality of m and N the one of \(\widehat{n}\) we have

$$\begin{aligned} D+{\varvec{{\alpha }}}_0+{\varvec{{\beta }}}_0\le N \end{aligned}$$
(C.6)

and

$$\begin{aligned} (|m_1|,\dots ,|m_D|,\underbrace{1,\,\dots \,,1}_{N-D\,\mathrm {times}} )\, \le \, {\left( \widehat{n}_1,\dots \widehat{n}_N\right) }. \end{aligned}$$
(C.7)

Set

$$\begin{aligned} {\sigma }_l= \mathrm{sign}({\varvec{{\alpha }}}_{m_l}-{\varvec{{\beta }}}_{m_l}). \end{aligned}$$

For every function g defined on \(\mathbb {Z}\) we have that

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) |{\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i|= & {} g(0)|{\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0|+ \sum _{l\ge 1} g(m_l), \nonumber \\ \sum _{i\in \mathbb {Z}} g(i) ({\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i)= & {} g(0)({\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0)+ \sum _{l\ge 1} {\sigma }_l g(m_l). \end{aligned}$$
(C.8)

Lemma C.3

Assume that g defined on \(\mathbb {Z}\) is non negative, even and not decreasing on \({\mathbb {N}}.\) Then, if \({\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\),

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) |{\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i| \le 2g(m_1)+ \sum _{l\ge 3} g(\widehat{n}_l). \end{aligned}$$
(C.9)

Proof

By (C.8)

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) |{\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i|= & {} g(0)|{\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0|+ \sum _{l\ge 1} g(m_l)\\\le & {} g(1)({\varvec{{\alpha }}}_0+{\varvec{{\beta }}}_0)+ 2g(m_1)+ \sum _{l\ge 3} g(m_l) \end{aligned}$$

and (C.9) follows by (C.6) and (C.7). \(\square \)

We denote as before the momentum by \(\pi \) so by (C.8)

$$\begin{aligned} \pi = \sum _{i\in \mathbb {Z}}{\left( {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right) }i = \sum _l {\sigma }_l m_l \end{aligned}$$
(C.10)

and

$$\begin{aligned} {\sum _i{{\left( {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right) }i^2}}= \sum _l {\sigma }_l m^2_l. \end{aligned}$$
(C.11)

Analogously

$$\begin{aligned} {\sum _i{{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }}} = D+|{\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0| {\mathop {\le }\limits ^{(C.6)}}N. \end{aligned}$$
(C.12)

Finally note that

$$\begin{aligned} \sigma _l\sigma _{l'} =-1\qquad \Longrightarrow \qquad m_l \ne m_{l'}. \end{aligned}$$
(C.13)

Note that

$$\begin{aligned} {\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\quad \Longrightarrow \quad N\ge 3 \ \ \mathrm{or}\ \ \pi \ne 0, \end{aligned}$$
(C.14)

indeed, by mass conservation, \(|{\varvec{{\alpha }}}|=|{\varvec{{\beta }}}|=1\) therefore if \(N=2\) we get \({\varvec{{\alpha }}}-{\varvec{{\beta }}}= e_{j_1}-e_{j_2}\) so if \(\pi =0\) we have \({\varvec{{\alpha }}}={\varvec{{\beta }}}\). Note also that

$$\begin{aligned} {\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\qquad \Longrightarrow \qquad D \ge 1, \end{aligned}$$
(C.15)

indeed, if \(D=0\) then \({\varvec{{\alpha }}}_l-{\varvec{{\beta }}}_l=0\) for every \(|l|\ge 1\) and, by mass conservation \({\varvec{{\alpha }}}_0={\varvec{{\beta }}}_0\), contradicting \({\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\) .

Lemma C.4

Given \({\varvec{{\alpha }}}\ne {\varvec{{\beta }}}\in {\mathbb {N}}^\mathbb {Z},\) with \(1\le |{\varvec{{\alpha }}}|=|{\varvec{{\beta }}}|<\infty \) and satisfying (7.1), we haveFootnote 32

$$\begin{aligned} {\left| m_1\right| }\le 20 |\pi |+ 31\sum _{l\ge 3}\widehat{n}_l^2. \end{aligned}$$
(C.16)

Proof

In the case \(D=1\) by (C.10) \(|\pi |=|m_1|\) and (C.16) follows. Let us now consider the case \(D=2\), i.e.

$$\begin{aligned} {\varvec{{\alpha }}}-{\varvec{{\beta }}}={\sigma }_1 e_{m_1}+{\sigma }_2 e_{m_2} +({\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0)e_0. \end{aligned}$$

Let us start with the case \({\sigma }_1{\sigma }_2=1.\) By mass conservation \(|{\sigma }_1+{\sigma }_2|=|{\varvec{{\beta }}}_0-{\varvec{{\alpha }}}_0|=2.\) By (C.12) \(N\ge 4.\) Then conditions (7.1) and (C.12) imply that

$$\begin{aligned} m_1^2 + m_2^2 \le 20+10|{\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0|=40. \end{aligned}$$

Then

$$\begin{aligned} |m_1|\le \sqrt{40} \le \frac{\sqrt{40}}{2} \sum _{\ell =3}^N \widehat{n}_\ell ^2 \end{aligned}$$

since \(N\ge 4\) and \(\widehat{n}_\ell \ge 1.\) When \({\sigma }_1{\sigma }_2=-1\) we have \(m_1\ne m_2\), \(|\pi |=|m_1-m_2|\ge 1\) and by mass conservation \({\varvec{{\alpha }}}_0-{\varvec{{\beta }}}_0=0.\) Then

$$\begin{aligned} (|m_1|+|m_2|)(|m_1|-|m_2|)= m_1^2 - m_2^2 \le 20. \end{aligned}$$

If \(|m_1|>|m_2|\) then

$$\begin{aligned} |m_1|\le 20\le 20 |\pi |. \end{aligned}$$
(C.17)

Otherwise \(m_1=-m_2\) and, therefore, \(|\pi |=2|m_1|,\) completing the proof in the case \(D=2.\)

Let us now consider the case \(D \ge 3\). By (7.1), (C.11) and (C.12)

$$\begin{aligned} m_1^2 +{\sigma }_1{\sigma }_2 m_2^2\le & {} 10 N + \sum _{l=3}^Dm_l^2 \le 10 N + \sum _{l=3}^N\widehat{n}_l^2\\= & {} 20 +\sum _{l=3}^N (10 + \widehat{n}_l^2) {\le } 20+ 11 \sum _{l=3}^N \widehat{n}_l^2 {\mathop {\le }\limits ^{N\ge 3}} 31\sum _{l=3}^N \widehat{n}_l^2. \end{aligned}$$

If \(\sigma _1\sigma _2 = 1\) then

$$\begin{aligned} {\left| m_1\right| }, {\left| m_2\right| } \le \sqrt{31\sum _{l\ge 3} \widehat{n}_l^2}. \end{aligned}$$

If \({\sigma }_1{\sigma }_2 = -1\)

$$\begin{aligned} (|m_1|+|m_2|)(|m_1|-|m_2|)= m_1^2 - m_2^2 \le 31\sum _{l\ge 3} \widehat{n}_l^2. \end{aligned}$$

Now, if \({\left| m_1\right| }\ne {\left| m_2\right| }\) then

$$\begin{aligned} {\left| m_1\right| } + {\left| m_2\right| } \le 31\sum _{l\ge 3} \widehat{n}_l^2. \end{aligned}$$

Conversely, if \({\left| m_1\right| } = {\left| m_2\right| }\), by (C.13), \(m_1\ne m_2\), hence \(m_1 = - m_2\). By substituting this relation into (C.10), we have

$$\begin{aligned} 2{\left| m_1\right| } \le {\left| \pi \right| } + \sum _{l\ge 3}{\left| m_l\right| } \le {\left| \pi \right| } + \sum _{l\ge 3}\widehat{n}_l^2, \end{aligned}$$

concluding the proof. \(\square \)

Conclusion of the proof of Lemma 7.1

As above, given \({\varvec{{\alpha }}},{\varvec{{\beta }}}\in {\mathbb {N}}^\mathbb {Z},\) with \(1\le |{\varvec{{\alpha }}}|=|{\varvec{{\beta }}}|<\infty \) we consider \(m=m({\varvec{{\alpha }}}-{\varvec{{\beta }}})\) and \(\widehat{n}=\widehat{n}({\varvec{{\alpha }}}+{\varvec{{\beta }}}).\) Note that \(N:=|{\varvec{{\alpha }}}+{\varvec{{\beta }}}|\ge 2.\)

We haveFootnote 33

$$\begin{aligned}&\sum _i{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }\langle i \rangle ^{\theta /2} {\mathop {\le }\limits ^{(C.9)}}2{\left| m_1\right| }^{\frac{\theta }{2}} + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}} \nonumber \\&\quad {\mathop {\le }\limits ^{(C.16)}}2{\left( 20|\pi | + 31 \sum _{l\ge 3} \widehat{n}_l^2 \right) }^{\frac{\theta }{2}} + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}} \nonumber \\&\quad \le 2 {\left( 20|\pi | \right) }^{\frac{\theta }{2}} + 2(31)^{\frac{\theta }{2}}\sum _{l\ge 3}\widehat{n}_l^\theta + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}} \nonumber \\&\quad \le \frac{13 }{1-\theta }{\left( (1-\theta ) {\left| \pi \right| }+ (2-2^\theta ){\left( \sum _{l\ge 3}\widehat{n}_l^\theta \right) }\right) }, \end{aligned}$$
(C.18)

using that \(1-\theta \le 2-2^\theta \) for \(0\le \theta \le 1.\) Then by Lemma 6.1 and (C.18) we get

$$\begin{aligned} \sum _i{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }\langle i \rangle ^{\theta /2}\le & {} \frac{13 }{1-\theta }{\left( (1-\theta ) {\left| \pi \right| }+ \sum _i \langle i \rangle ^\theta {\left( {\varvec{{\alpha }}}_i +{\varvec{{\beta }}}_i\right) } + \theta {\left| \pi \right| } - 2\widehat{n}_1^\theta \right) }\\\le & {} \frac{13 }{1-\theta } {\left[ \sum _i \langle i \rangle ^\theta {\left( {\varvec{{\alpha }}}_i +{\varvec{{\beta }}}_i\right) } + {\left| \pi \right| } - 2\langle j \rangle ^\theta \right] }, \end{aligned}$$

proving (7.2).

Let us now prove (7.3) passing to the logarithm. We have

$$\begin{aligned} \begin{aligned}&\sum _i\ln (1+{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }{\langle i \rangle })\\&\quad = \sum _{|i|\le 1}\ln (1+{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }) + \sum _{|i|\ge 2}\ln (1+{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }|i|)\\&\quad \le 3\ln (1+N ) + \sum _{|i|\ge 2}\ln (1+{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }|i|)\\&\quad \le 3\ln 2+3\ln N + \frac{3}{2} \sum _{|i|\ge 2}{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }\ln |i| , \end{aligned} \end{aligned}$$
(C.19)

using that \(1+cx \le \frac{3}{2} x^c\) for \(c\ge 1,\)\(x\ge 2.\) If \({\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i=0\) for every \(|i|\ge 2\) then (7.3) follows. Assume now that \({\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\ne 0\) for some \(|i|\ge 2.\) By (C.14) we have

$$\begin{aligned} N\ge 3\quad \mathrm{or}\quad \pi \ne 0. \end{aligned}$$
(C.20)

We claim that, when \(N\ge 3,\)

$$\begin{aligned} \ln {\left( \sum _{l= 3}^N \widehat{n}_l^2\right) } \le \ln N +\sum _{l= 3}^N \ln \widehat{n}_l^2. \end{aligned}$$
(C.21)

Let \({\mathcal {S}}:=\{3\le l\le N,\ \mathrm{s.t.}\ \widehat{n}_l\ge 2\}.\) If \({\mathcal {S}}=\emptyset \) we have the equality in (C.21). Otherwise \(\sum _{l\in {\mathcal {S}}}\widehat{n}_l^2\ge 4\) andFootnote 34

$$\begin{aligned} \ln {\left( \sum _{l= 3}^N \widehat{n}_l^2\right) } \le \ln {\left( N+\sum _{l\in {\mathcal {S}}}\widehat{n}_l^2\right) } \le \ln N +\sum _{l\in {\mathcal {S}}} \ln \widehat{n}_l^2, \end{aligned}$$

proving (C.21).

We claim that

$$\begin{aligned} \ln {\left( 20 {\left| \pi \right| }+ 31 \sum _{l= 3}^N \widehat{n}_l^2 \right) } \le \ln (1+|\pi |)+\ln N+\sum _{l= 3}^N \ln \widehat{n}_l^2 +\ln 20+\ln 31. \end{aligned}$$
(C.22)

Indeed consider first the case \(\pi =0,\) then \(N\ge 3\) by (C.20) and (C.22) follows by (C.21). Consider now the case \(|\pi |\ge 1.\) If \(N<3\) (C.22) follows (there is no sum). If \(N\ge 3\) we haveFootnote 35

$$\begin{aligned}&\ln {\left( 20 {\left| \pi \right| }+ 31 \sum _{l= 3}^N \widehat{n}_l^2 \right) } \le \ln {\left( 20 {\left| \pi \right| }\right) }+\ln {\left( 31 \sum _{l= 3}^N \widehat{n}_l^2 \right) }\\&\quad \le \ln (|\pi |)+\ln {\left( \sum _{l= 3}^N \widehat{n}_l^2 \right) } +\ln 20+\ln 31. \end{aligned}$$

Recalling (C.21) this complete the proof of (C.22).

Let us continue the proof of (7.3). Set \(g(i):=0\) if \(|i|\le 1\) and \(g(i):=\ln |i|\) if \(|i|\ge 2\) and apply (C.9) to (C.19); we get

$$\begin{aligned}&\sum _{|i|\ge 2}{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }\ln |i| \le 2 \ln |m_1|+\sum _{l\ge 3} \ln |\widehat{n}_l|\\&\quad {\mathop {\le }\limits ^{(C.16)}}2\ln {\left( 20 {\left| \pi \right| }+ 31 \sum _{l\ge 3} \widehat{n}_l^2 \right) } +\sum _{l\ge 3} \ln \widehat{n}_l \\&\quad {\mathop {\le }\limits ^{(C.22)}}2\ln (1+|\pi |)+2\ln N+5\sum _{l= 3}^N \ln \widehat{n}_l +16. \end{aligned}$$

Inserting in (C.19) we obtain

$$\begin{aligned} \sum _i\ln (1+{\left| {\varvec{{\alpha }}}_i-{\varvec{{\beta }}}_i\right| }{\langle i \rangle }) \le 3\ln (1+|\pi |)+6\ln N+\frac{15}{2}\sum _{l= 3}^N \ln \widehat{n}_l +27\, \end{aligned}$$

concluding the proof of (7.3). \(\square \)

Proof of Lemma 7.2

First of all we note that

$$\begin{aligned} \sum _i f_i(|\ell _i|)= \sum _{i\ \text {s.t.} \ \ell _i\ne 0} f_i(|\ell _i|) \end{aligned}$$

since \(f_i(0)=0.\) We have thatFootnote 36

$$\begin{aligned} f_i(x) \le -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}x + {2} \ln (x)+ {\left( {2}+{q}\right) }\ln \langle i \rangle +1,\qquad \forall \, x\ge 1. \end{aligned}$$

We have that

$$\begin{aligned} \max _{x\ge 1} \left( -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}x + 2 \ln (x)\right) = \left\{ \begin{array}{l} \displaystyle -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \qquad \qquad \qquad \ \,\qquad \text {if}\quad \langle i \rangle \ge i_0, \\ \\ \displaystyle -{2}+{2}\ln \frac{2C_* }{{\sigma }}-\theta \ln \langle i \rangle \qquad \text {if}\quad \langle i \rangle < i_0, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} i_0:=\left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }}, \end{aligned}$$

since the maximum is achieved for \(x=1\) if \(\langle i \rangle \ge i_0\) and \(x=\frac{2C_* }{{\sigma }\langle i \rangle ^{\theta /2}}\) if \(\langle i \rangle < i_0\). Note that \(i_0\ge e.\) Then we get

$$\begin{aligned}&\sum _i f_i(|\ell _i|) = \sum _{i\ \text {s.t.} \ \ell _i\ne 0} f_i(|\ell _i|) \le \\&\quad \sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0} \left( {\left( {2}+{q}\right) }\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \right) + \sum _{\langle i \rangle < i_0} \left( 2\ln \frac{2C_* }{{\sigma }}+\Big ({2}+{q}-\theta \Big ) \ln \langle i \rangle \right) . \end{aligned}$$

We immediately have that

$$\begin{aligned}&\sum _{\langle i \rangle < i_0} \left( 2\ln \frac{2C_* }{{\sigma }}+\Big ({2}+{q}-\theta \Big ) \ln \langle i \rangle \right) \le 3 i_0 \left( 2\ln \frac{2C_* }{{\sigma }}+({2}+{q}) \ln i_0 \right) \\&\quad = 3\left( 2+ \frac{2}{\theta }({2}+{q})\right) \left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }} \ln \frac{2C_* }{{\sigma }}. \end{aligned}$$

Moreover, in the case \(\langle i \rangle \ge i_0\ge e,\)

$$\begin{aligned} {\left( {2}+{q}\right) }\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}\le & {} {\left( {2}+{q}+1\right) }\ln \langle i \rangle -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \\= & {} \frac{2}{\theta }{\left( {2}+{q}+1\right) }\Big ( \ln \langle i \rangle ^{\frac{\theta }{2}}-2{\mathfrak {C} } \langle i \rangle ^{\frac{\theta }{2}} \Big ) \end{aligned}$$

where

$$\begin{aligned} {\mathfrak {C} }:=\frac{{\sigma }\theta }{4C_* {\left( {2}+{q}+1\right) }}<1 . \end{aligned}$$

Therefore

$$\begin{aligned} S_*:=\sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0} \left( {\left( {2}+{q}\right) }\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \right) \end{aligned}$$

satisfies

$$\begin{aligned} S_* \le \sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0} \frac{2}{\theta }{\left( {2}+{q}+1\right) }\Big ( \ln \langle i \rangle ^{\frac{\theta }{2}}-2{\mathfrak {C}} \langle i \rangle ^{\frac{\theta }{2}} \Big ). \end{aligned}$$

We have thatFootnote 37

$$\begin{aligned} \ln \langle i \rangle ^{\frac{\theta }{2}}-2{\mathfrak {C}} \langle i \rangle ^{\frac{\theta }{2}} \le -{\mathfrak {C}} \langle i \rangle ^{\frac{\theta }{2}}, \qquad \text {when}\qquad \langle i \rangle \ge i_*:= \left( \frac{2}{{\mathfrak {C}}}\ln \frac{1}{{\mathfrak {C}}}\right) ^{\frac{2}{\theta }} . \end{aligned}$$

Note that

$$\begin{aligned} i_\sharp \ge \max \{ i_0, i_*\}. \end{aligned}$$

Therefore

$$\begin{aligned} S_*\le & {} \frac{2}{\theta }{\left( {2}+{q}+1\right) } \left( \sum _{\langle i \rangle <i_\sharp } \ln \langle i \rangle ^{\frac{\theta }{2}} - \sum _{\langle i \rangle \ge i_\sharp \ \text {s.t.} \ \ell _i\ne 0} \Big ( {\mathfrak {C}} \langle i \rangle ^{\frac{\theta }{2}} \Big ) \right) \\\le & {} {\left( {2}+{q}+1\right) } \left( 3 i_\sharp \ln i_\sharp -\frac{2{\mathfrak {C}}}{\theta } M_\ell ^{\frac{\theta }{2}} \right) \, \end{aligned}$$

where

$$\begin{aligned} M_\ell :=\max \{ |i|\ge i_\sharp ,\ \ \text {s.t.}\ \ \ell _i\ne 0 \} \end{aligned}$$

and \(M_\ell :=0\) if \(|\ell _i|=0\) for every \(|i|\ge i_\sharp .\) In conclusion we get

$$\begin{aligned} \sum _i f_i(|\ell _i|)\le & {} 3\left( {2}+ \frac{2}{\theta }({2}+{q})\right) \left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }} \ln \frac{2C_* }{{\sigma }} + {\left( {2}+{q}+1\right) } \left( 3 i_\sharp \ln i_\sharp -\frac{2{\mathfrak {C}}}{\theta } M_\ell ^{\frac{\theta }{2}} \right) \\\le & {} 6({q}+3) i_\sharp \ln i_\sharp - \frac{{\sigma }}{2C_* } M_\ell ^{\frac{\theta }{2}}\\\le & {} 7({q}+3) i_\sharp \ln i_\sharp - \frac{{\sigma }}{2C_* } \big (\widehat{n}_1(\ell )\big )^{\frac{\theta }{2}}, \end{aligned}$$

noting that \(\widehat{n}_1(\ell )=M_\ell \) if \(M_\ell \ne 0,\) otherwise \(\widehat{n}_1(\ell )< i_\sharp ,\) and, therefore,

$$\begin{aligned} \frac{{\sigma }}{2C_* } \big (\widehat{n}_1(\ell )\big )^{\frac{\theta }{2}} < \frac{{\sigma }}{2C_* } i_\sharp ^{\frac{\theta }{2}} \le ({q}+3) i_\sharp \ln i_\sharp . \end{aligned}$$

\(\square \)

Proof of Lemma  4.1

For \(\ell \in \mathbb {Z}^\mathbb {Z}\) with \( 0<|\ell |<\infty \) we define

$$\begin{aligned} {\mathcal {R}}_\ell := {\left\{ \omega \in \Omega _{q}\,:\, |\omega \cdot \ell |\le \frac{\gamma }{1+|\ell _0|^{\mu _1}} \prod _{n\ne 0}\frac{1}{(1+|\ell _n|^{\mu _1} | n|^{{\mu _2}+{q}})}\right\} } \end{aligned}$$
  • if \(\ell \) is such that \(\ell _n=0\)\(\forall n\ne 0\) then

    $$\begin{aligned} \mu ({\mathcal {R}}_\ell ) = \frac{\gamma }{1+|\ell _0|^{\mu _1} }. \end{aligned}$$
  • Otherwise: let \(s=s(\ell )>0\) be the smallest positive index i such that \(|\ell _i |+|\ell _{-i}|\ne 0\) and \(S=S(\ell )\) be the biggest. Then we haveFootnote 38

    $$\begin{aligned} \mu ({\mathcal {R}}_\ell ) \le \frac{\gamma s^{q}}{{\left( 1+|\ell _0|^{\mu _1}\right) } }\prod _{n\ne 0}\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})}. \end{aligned}$$

Let us write

$$\begin{aligned}&\frac{1}{1 + |\ell _0|^{\mu _1}}\prod _{n\ne 0}\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \\&\quad = \frac{1}{1 + |\ell _0|^{\mu _1}}\prod _{n>0}\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}\\&\quad = \frac{1}{1 + |\ell _0|^{\mu _1}}\prod _{s(\ell )\le n\le S(\ell )}\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}. \end{aligned}$$

Now

$$\begin{aligned}&\mu (\Omega _{q}\setminus {\mathtt {D}_{\gamma ,{q}}})\le \sum _{\ell } \mu ({{\mathcal {R}}}_\ell )= \sum _{ \ell _0}\frac{\gamma }{1+|\ell _0|^{\mu _1} } \\&\quad + \sum _{s>0} \sum _{\begin{array}{c} \ell : s(\ell )= S(\ell )=s \end{array}}\frac{1}{1 + |\ell _0|^{\mu _1}}\frac{\gamma s^{q}}{|\ell _s|(1+|\ell _s|^{\mu _1} |s|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-s}|^{\mu _1} |s|^{{\mu _2}+{q}})} \end{aligned}$$
(C.23)
$$\begin{aligned}&\quad + \sum _{0<s< S} \sum _{\begin{array}{c} \ell : s(\ell )=s,\\ S(\ell )=S \end{array}}\frac{\gamma s^{q}}{1 + |\ell _0|^{\mu _1}}\prod _{s\le n\le S }\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}. \end{aligned}$$
(C.24)

Let us estimate (C.24)

$$\begin{aligned}&\sum _{s>0}\sum _{\ell _0\in \mathbb {Z}}\frac{1}{1 + |\ell _0|^{\mu _1}}\sum _{ \begin{array}{c} \ell _s,\ell _{-s}\in \mathbb {Z}\\ |\ell _s|+|\ell _{-s}|>0 \end{array}}\frac{\gamma s^{q}}{(1+|\ell _s|^{\mu _1} |s|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-s}|^{\mu _1} |s|^{{\mu _2}+{q}})}\\&\le c(\mu _1)\gamma \sum _{s>0} s^{q}\sum _{ \begin{array}{c} \ell _s,\ell _{-s}\in \mathbb {Z}\\ |\ell _s|+|\ell _{-s}|>0 \end{array}}\frac{1}{(1+|\ell _s|^{\mu _1} |s|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-s}|^{\mu _1} |s|^{{\mu _2}+{q}})}. \end{aligned}$$

Now since

$$\begin{aligned} \sum _{h=1}^\infty \frac{1}{(1+h^{\mu _1} |n|^{{\mu _2}+{q}})} \le \sum _{h=1}^\infty \frac{1}{h^{\mu _1} |n|^{{\mu _2}+{q}}} \le \frac{c(\mu _1)}{|n|^{{\mu _2}+{q}}} \end{aligned}$$

we have

$$\begin{aligned} \sum _{h\in \mathbb {Z}} \frac{1}{(1+|h|^{\mu _1} |n|^{{\mu _2}+{q}})} \le 1+ \frac{2c(\mu _1)}{|n|^{{\mu _2}+{q}}}. \end{aligned}$$

Then we have

$$\begin{aligned} \sum _{ \begin{array}{c} \ell _s,\ell _{-s}\in \mathbb {Z}\\ |\ell _s|+|\ell _{-s}|>0 \end{array}}\frac{1}{(1+|\ell _s|^{\mu _1} |s|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-s}|^{\mu _1} |s|^{{\mu _2}+{q}})} \le \frac{c_1(\mu _1)}{|s|^{{\mu _2}+{q}}} \end{aligned}$$

and consequently (C.24) is bounded by

$$\begin{aligned} c_2(\mu _1)\gamma \sum _{s>0} |s|^b \le c_3(\mu _1,\mu _2)\gamma . \end{aligned}$$

Regarding the third line in (C.23), we note that for all n we have

$$\begin{aligned} \sum _{ \ell _n,\ell _{-n}\in \mathbb {Z}} \frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}\le {\left( 1 + 2 \frac{c(\mu _1)}{|n|^{{\mu _2}+{q}}}\right) }^2. \end{aligned}$$

Hence

$$\begin{aligned}&\sum _{\begin{array}{c} \ell : s(\ell )=s,\\ S(\ell )=S \end{array}}\frac{1}{1 + |\ell _0|^{\mu _1}}\prod _{s\le n\le S }\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}\\&\quad = \sum _{ \ell _0\in \mathbb {Z}}\frac{1}{1 + |\ell _0|^{\mu _1}}\times \sum _{ \begin{array}{c} \ell _s,\ell _{-s}\in \mathbb {Z}\\ |\ell _s|+|\ell _{-s}|>0 \end{array}}\frac{1}{(1+|\ell _s|^{\mu _1} |s|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-s}|^{\mu _1} |s|^{{\mu _2}+{q}})}\\&\qquad \times \sum _{ \begin{array}{c} \ell _S,\ell _{-S}\in \mathbb {Z}\\ |\ell _S|+|\ell _{-S}|>0 \end{array}}\frac{1}{(1+|\ell _S|^{\mu _1} |S|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-S}|^{\mu _1} |S|^{{\mu _2}+{q}})}\\&\qquad \times \prod _{s< n< S }\sum _{ \ell _n,\ell _{-n}\in \mathbb {Z}}\frac{1}{(1+|\ell _n|^{\mu _1} |n|^{{\mu _2}+{q}})} \frac{1}{(1+|\ell _{-n}|^{\mu _1} |n|^{{\mu _2}+{q}})}\\&\quad \le \frac{c_4(\mu _1)}{s^{{\mu _2}+{q}}S^{{\mu _2}+{q}}} \prod _{s< n< S }{\left( 1 + 2 \frac{c(\mu _1)}{|n|^{{\mu _2}+{q}}}\right) }^2\\&\quad \le \frac{c_4(\mu _1)}{s^{{\mu _2}+{q}}S^{{\mu _2}+{q}}} \exp \left( \sum _{n\ge 1 } \ln {\left( 1 + 2 \frac{c(\mu _1)}{|n|^{{\mu _2}+{q}}}\right) }^2 \right) \\&\quad \le \frac{c_5(\mu _1,\mu _2)}{s^{{\mu _2}+{q}}S^{{\mu _2}+{q}}}. \end{aligned}$$

Then, multiplying by \(\gamma s^{q}\) and taking the \(\sum _{0<s<S},\) we have that also (C.25) is bounded by some constant \({C_{\mathtt {meas}}}(\mu _1,\mu _2)\gamma \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasco, L., Massetti, J.E. & Procesi, M. An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS. Commun. Math. Phys. 375, 2089–2153 (2020). https://doi.org/10.1007/s00220-019-03618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03618-x

Navigation