Skip to main content
Log in

Sharp Asymptotics for the Truncated Two-Point Function of the Ising Model with a Positive Field

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the correction to exponential decay of the truncated two points function in the homogeneous positive field Ising model is \(c\Vert x\Vert ^{-(d-1)/2}\). The proof is based on the development in the random current representation of a “modern” Ornstein–Zernike theory, as developed by Campanino et al. (Ann Probab 36(4):1287–1321, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham, D.B., Kunz, H.: Ornstein–Zernike theory of classical fluids at low density. Phys. Rev. Lett. 39(16), 1011–1014 (1977)

    Google Scholar 

  2. Aizenman, M.: Geometric analysis of \(\varphi ^{4}\) fields and Ising models. I, II. Commun. Math. Phys. 86(1), 1–48 (1982)

    Google Scholar 

  3. Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334(2), 719–742 (2015)

    Google Scholar 

  4. Biskup, M., Chayes, L., Kotecký, R.: Coexistence of partially disordered/ordered phases in an extended Potts model. J. Stat. Phys. 99(5), 1169–1206 (2000)

    Google Scholar 

  5. Campanino, M., Ioffe, D.: Ornstein–Zernike theory for the Bernoulli bond percolation on \(\mathbb{Z}^d\). Ann. Probab. 30(2), 652–682 (2002)

    Google Scholar 

  6. Campanino, M., Ioffe, D., Velenik, Y.: Ornstein–Zernike theory for finite range Ising models above \(T_c\). Probab. Theory Relat. Fields 125(3), 305–349 (2003)

    Google Scholar 

  7. Campanino, M., Ioffe, D., Velenik, Y.: Fluctuation theory of connectivities for subcritical random cluster models. Ann. Probab. 36(4), 1287–1321 (2008)

    Google Scholar 

  8. Crawford, Nicholas, Ioffe, Dmitry: Random current representation for transverse field Ising model. Commun. Math. Phys. 296(2), 447–474 (2010)

    Google Scholar 

  9. Duminil-Copin, H.: Private communication (2018)

  10. Duminil-Copin, H., Goswami, S., Raoufi, A.: Exponential decay of truncated correlations for the Ising model in any dimension for all but the critical temperature. (August 2018). arXiv:1808.00439

  11. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  12. Graham, Ross: Correlation inequalities for the truncated two-point function of an Ising ferromagnet. J. Stat. Phys. 29(2), 177–183 (1982)

    Google Scholar 

  13. Griffiths, Robert B, Hurst, C .A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11(3), 790–795 (1970)

    Google Scholar 

  14. McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)

    Google Scholar 

  15. Ornstein, L.S., Zernike, F.: Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Akad. Sci. 17, 793–806 (1914)

    Google Scholar 

  16. Ott, S.: On Ornstein–Zernike theory and some applications. Ph.D. thesis (2019)

  17. Ott, S., Velenik, Y.: Asymptotics of even–even correlations in the Ising model. Probab. Theory Relat. Fields (2018)

  18. Ott, S., Velenik, Y.: Potts models with a defect line. Commun. Math. Phys. 362(1), 55–106 (2018)

    Google Scholar 

  19. Paes-Leme, P.J.: Ornstein–Zernike and analyticity properties for classical lattice spin systems. Ann. Phys. 115(2), 367–387 (1978)

    Google Scholar 

  20. Zernike, F.: The clustering-tendency of the molecules in the critical state and the extinction of light caused thereby. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 18, 1520–1527 (1916)

    Google Scholar 

Download references

Acknowledgements

The author thanks Franco Severo for showing him the argument used in the proof of Theorem A.2, Yvan Velenik for various comments and corrections on previous drafts of this paper and the anonymous referees for comments that helped improving the overall presentation. The author gratefully acknowledge the support of the Swiss National Science Foundation through the NCCR SwissMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ott.

Additional information

Communicated by H. Duminil-Copin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. A Few Random Current Properties

We collect here a few properties of the random current together with proofs.

1.1 Insertion tolerance

Lemma A.1

For any graph \(G=(V_G,{\mathbf {J}})\) and any \(e\in E_G\), uniformly over the values of \(n_f, f\ne e\), one has:

$$\begin{aligned} {\mathbf {P}}^A_{G}({\mathbf {n}}_e>0 ,{\mathbf {n}}_f=n_f\forall f\ne e) \ge c({\tilde{J}}_e){\mathbf {P}}^A_{G}({\mathbf {n}}_f=n_f\forall f\ne e) \end{aligned}$$

where \(c({\tilde{J}}_e)=\frac{\cosh ({\tilde{J}}_e)-1}{\cosh ({\tilde{J}}_e)}\).

Proof

If the values \(n_f\) implies \({\mathbf {n}}_e=1\mod 2\), then \({\mathbf {P}}^A_{G}({\mathbf {n}}_e>0 \,|\,{\mathbf {n}}_f=n_f\forall f\ne e)=1\) and it is over. Otherwise, \({\mathbf {P}}^A_{G}({\mathbf {n}}_e>0 \,|\,{\mathbf {n}}_f=n_f\forall f\ne e)\) is the probability for a Poisson random variable of parameter \({\tilde{J}}_e\) to be positive conditionally on being even. \(\quad \square \)

1.2 Exponential ratio mixing when \(h>0\)

We describe here an adaptation of an argument due to Duminil-Copin [9] to obtain exponential mixing under the random current measure with a field (a version of this idea is used in [10]).

We describe the results for a finite weighted graph \(\Lambda \). As we consider random current measures, the support of a local event is a set of edges; to handle distances between supports define, for \(E\subset E_{\Lambda _g}\),

$$\begin{aligned} V=V(E) = \bigcup _{e\in E}e\cap V_{\Lambda } \end{aligned}$$
(14)

the set of non-ghost endpoints of edges in \(E\).

Theorem A.2

There exist \(R\ge 0\) and \(C\ge 0\) such that, for any \(E_1,E_2\) sets of edges, \(V_i=V(E_i) \), any \(A\subset V_{\Lambda }\) and any events \(D\)\(E_1\)-measurable and \(D'\)\(E_2\)-measurable, if \(d_{\Lambda }(A\cup V_1,V_2) >R\), then

$$\begin{aligned} \Big |\log \Big ( \frac{{\mathbf {P}}_{\Lambda _g}^{A} (D,D')}{{\mathbf {P}}_{\Lambda _g}^{A} (D){\mathbf {P}}_{\Lambda _g}^{A} (D')}\Big )\Big |\le C\cosh (h)^{-d_{\Lambda }(A\cup V_1,V_2)}. \end{aligned}$$
(15)

Proof

Fix two disjoint sets of edges \(E_1\) and \(E_2\). Denote \({\tilde{\Lambda }}_g\) the graph obtained from \(\Lambda _g\) by removing the edges of \(E_1\cup E_2\). Then the key observation is that for any configurations \( n_1, m_1\in {\mathbb {Z}}_{+}^{E_1}\) and \( n_2, m_2\in {\mathbb {Z}}_{+}^{E_2}\),

$$\begin{aligned} \frac{{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, n_2){\mathbf {P}}_{\Lambda _g}^{A} ( m_1, m_2)}{{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, m_2){\mathbf {P}}_{\Lambda _g}^{A} ( m_1, n_2)} = \frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1\Delta \partial n_2)Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1\Delta \partial m_2)}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1\Delta \partial m_2)Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1\Delta \partial n_2)}. \end{aligned}$$

Then, the RHS can be written

$$\begin{aligned}&\frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1\Delta \partial n_2)Z_{{\tilde{\Lambda }}_g}(\varnothing )}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1)Z_{{\tilde{\Lambda }}_g}(\partial n_2)} \frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1\Delta \partial m_2)Z_{{\tilde{\Lambda }}_g}(\varnothing )}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1)Z_{{\tilde{\Lambda }}_g}(\partial m_2)} \\&\quad \times \frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1)Z_{{\tilde{\Lambda }}_g}(\partial m_2)}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1\Delta \partial m_2)Z_{{\tilde{\Lambda }}_g}(\varnothing )} \frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1)Z_{{\tilde{\Lambda }}_g}(\partial n_2)}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m_1\Delta \partial n_2)Z_{{\tilde{\Lambda }}_g}(\varnothing )}. \end{aligned}$$

Now, using the switching lemma,

$$\begin{aligned} 1-\frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1)Z_{{\tilde{\Lambda }}_g}(\partial n_2)}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n_1\Delta \partial n_2)Z_{{\tilde{\Lambda }}_g}(\varnothing )}= {\mathbf {P}}_{{\tilde{\Lambda }}_g}^{A\Delta \partial n_1\Delta \partial n_2,\varnothing }\big ( {\mathcal {E}}_{\partial n_2}^c \big ). \end{aligned}$$

Now, if \((A\Delta \partial n_1)\cap \partial n_2\cap \Lambda \ne \varnothing \), then simply bound the probability by \(1\). Otherwise, \((A\Delta \partial n_1)\cap \partial n_2=\{g\}\) or \(\varnothing \). In both cases, the combination of the sources constraint and \( {\mathcal {E}}_{\partial n_2}^c\) implies the existence of an edge-self-avoiding path \(\gamma \) going from \((A\Delta \partial n_1)\) to \(\partial n_2\) in the first current and such that \(\gamma \nleftrightarrow g\) in the sum of the two currents. One thus gets,

$$\begin{aligned} {\mathbf {P}}_{{\tilde{\Lambda }}_g}^{A\Delta \partial n_1\Delta \partial n_2,\varnothing }\big ( {\mathcal {E}}_{\partial n_2}^c \big )&\le \cosh (h)^{-d_{\Lambda }\big ((A\Delta \partial n_1)\cap \Lambda ,\partial n_2\cap \Lambda \big )}\\&\le \cosh (h)^{-d_{\Lambda }(A\cup V_1,V_2)}, \end{aligned}$$

as \(d_{\Lambda }\big ((A\Delta \partial n_1)\cap \Lambda ,\partial n_2\cap \Lambda \big )\ge d_{\Lambda }(A\cup V_1,V_2) \), where \(V_i=\bigcup _{e\in E_1}e\cap \Lambda \). Using this, there exist \(C\ge 0\) and \(R\ge 0\) such that

$$\begin{aligned} \Big |\log \Big (\frac{{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, n_2){\mathbf {P}}_{\Lambda _g}^{A} ( m_1, m_2)}{{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, m_2){\mathbf {P}}_{\Lambda _g}^{A} ( m_1, n_2)}\Big )\Big |\le C\cosh (h)^{-d_{\Lambda }(A\cup V_1,V_2)} \end{aligned}$$

whenever \(d_{\Lambda }(A\cup V_1,V_2)\ge R\). Now, fix \(A\subset \Lambda \), take \(E_1,E_2\) two sets of edges, let \(V_1,V_2\) be defined as before. Suppose \(d_{\Lambda }(A\cup V_1,V_2)= L>R\), then for any two events \(D,D'\) supported on \(E_1,E_2\) respectively,

$$\begin{aligned} {\mathbf {P}}_{\Lambda _g}^{A} (D,D')&= \sum _{\begin{array}{c} n_1\in {\mathbb {Z}}_{+}^{E_1}\\ n_1\in D \end{array}}\sum _{\begin{array}{c} n_2\in {\mathbb {Z}}_{+}^{E_2}\\ n_2\in D' \end{array}}{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, n_2)\sum _{ m_1\in {\mathbb {Z}}_{+}^{E_1}}\sum _{ m_2\in {\mathbb {Z}}_{+}^{E_2}}{\mathbf {P}}_{\Lambda _g}^{A} ( m_1, m_2)\\&\le \exp {C\cosh (h)^{-L}}\sum _{\begin{array}{c} n_1\in D\\ n_2\in D' \end{array}}\sum _{ m_1, m_2 }{\mathbf {P}}_{\Lambda _g}^{A} ( n_1, m_2){\mathbf {P}}_{\Lambda _g}^{A} ( m_1, n_2)\\&= \exp {C\cosh (h)^{-L}}{\mathbf {P}}_{\Lambda _g}^{A} (D){\mathbf {P}}_{\Lambda _g}^{A} (D'). \end{aligned}$$

In the same fashion,

$$\begin{aligned} {\mathbf {P}}_{\Lambda _g}^{A} (D,D') \ge \exp {-C\cosh (h)^{-L}}{\mathbf {P}}_{\Lambda _g}^{A} (D){\mathbf {P}}_{\Lambda _g}^{A} (D'). \end{aligned}$$

So,

$$\begin{aligned} \Big |\log \Big ( \frac{{\mathbf {P}}_{\Lambda _g}^{A} (D,D')}{{\mathbf {P}}_{\Lambda _g}^{A} (D){\mathbf {P}}_{\Lambda _g}^{A} (D')}\Big )\Big |\le C\cosh (h)^{-L}. \end{aligned}$$

\(\square \)

Using the same technique, one can obtain:

Lemma A.3

There exist \(R\ge 0\) and \(C\ge 0\) such that, for any \(E\) set of edges, \(V=V(E) \), any \(A\subset V_{\Lambda }\) and any event \(D\)\(E\)-measurable, if \(d_{\Lambda }(A,V) >R\), then

$$\begin{aligned} \Big |\log \Big ( \frac{{\mathbf {P}}_{\Lambda _g}^{A} (D)}{{\mathbf {P}}_{\Lambda _g}^{\varnothing } (D)}\Big )\Big |\le C\cosh (h)^{-d_{\Lambda }(A,V)}. \end{aligned}$$
(16)

Proof

As before, let \( n\in {\mathbb {Z}}_{+}^{E}\), and let \({\tilde{\Lambda }}_g\) be the graph obtained by removing edges in \(E\) from \(\Lambda _g\). Then

$$\begin{aligned} {\mathbf {P}}_{\Lambda _g}^{A}( n) = \sum _{ m\in {\mathbb {Z}}_{+}^{E} } \frac{{\mathbf {P}}_{\Lambda _g}^{A}( n){\mathbf {P}}_{\Lambda _g}^{\varnothing }( m)}{{\mathbf {P}}_{\Lambda _g}^{\varnothing }( n){\mathbf {P}}_{\Lambda _g}^{A}( m)}{\mathbf {P}}_{\Lambda _g}^{\varnothing }( n){\mathbf {P}}_{\Lambda _g}^{A}( m). \end{aligned}$$

So, one just need to control the fraction term:

$$\begin{aligned} \frac{{\mathbf {P}}_{\Lambda _g}^{A}( n){\mathbf {P}}_{\Lambda _g}^{\varnothing }( m)}{{\mathbf {P}}_{\Lambda _g}^{A}( m){\mathbf {P}}_{\Lambda _g}^{\varnothing }( n)} = \frac{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial n)Z_{{\tilde{\Lambda }}_g}(\partial m)}{Z_{{\tilde{\Lambda }}_g}(A\Delta \partial m)Z_{{\tilde{\Lambda }}_g}(\partial n)}. \end{aligned}$$

Proceeding as in the proof of Theorem A.2, one get the wanted estimate. \(\quad \square \)

Appendix B. Toolbox

1.1 A combinatorial lemma

Lemma B.1

Let \(G=(V_G,E_G)\) be a finite connected graph. For any \(A\subset V_G\) of even cardinality, there exists \(\omega \subset E_G\) with \(\partial \omega = A\).

Proof

As \(G\) is connected, it admits a spanning tree. So it is sufficient to prove the result for trees. Assume \(G\) is a tree. Let \(A=\{a_1,\ldots ,a_n\}\). We proceed by induction over \(n=|A|\). For \(n=2\), set \(\omega \) to be the (unique) path going from \(a_1\) to \(a_2\). For \(n\) even, suppose one has constructed \(\omega '\) with \(\partial \omega ' = \{a_1,\ldots ,a_{n-2}\}\). Let \(\gamma \) be the unique path going from \(a_{n-1}\) to \(a_n\) in \(G\). Set \(\omega = \omega '\Delta \gamma \). As the sources of the symmetric difference is the symmetric difference of the sources, we have \(\partial \omega = \partial \omega '\Delta \partial \gamma =\{a_1,\ldots ,a_{n-2}\}\Delta \{a_{n-1},a_n\}= A\). \(\quad \square \)

1.2 A geometrical lemma

For \(\xi \) a norm on \({\mathbb {R}}^d\), \(t\in \partial {\mathbf {K}}_{\xi }\) (see Subsection 2.5) and \(\delta \in (0,1)\), define cones

$$\begin{aligned} {\mathcal {Y}}^\blacktriangleleft _{\delta }=\big \{ x\in {\mathbb {R}}^d: (t,x)_d>(1-\delta )\xi (x) \big \},\qquad {\mathcal {Y}}^\blacktriangleright _{\delta } = -{\mathcal {Y}}^\blacktriangleleft _{\delta }(t). \end{aligned}$$

Remark that \({\mathcal {Y}}^\blacktriangleleft _{\delta }\) are increasing sets in \(\delta \). Let \(A\) be a compact subset of \({\mathbb {R}}^d\) and \(x\in {\mathbb {R}}^d\). We say that \(A\)\(\delta \)-sees\(x\) if there exists \(y\in A\) with \(x\in y+{\mathcal {Y}}^\blacktriangleleft _{\delta }\); we say that \(A\)\(\delta \)-blocks\(x\) if \(A\not \subset x+{\mathcal {Y}}^\blacktriangleright _{\delta }\) (in other words, \(A\)\(\delta \)-blocks \(x\) if \(x\) does not \(\delta \)-backward-see \(A\)).

Lemma B.2

Let \(A\) be a bounded subset of \({\mathbb {R}}^d\). Let \(\delta ,\delta '>0\) such that \(\delta +\delta '<1\). Then, the diameter of

$$\begin{aligned} V=\{x\in {\mathbb {R}}^d: A\ \delta \text {-sees}\ x, A\ (\delta +\delta ')\text {-blocks}\ x \} \end{aligned}$$

is upper bounded by a constant depending only on \(\delta ,\delta ',A,d\).

Proof

As the only parameters of our problem are \(\delta ,\delta ',A,d\), one only need to show that \(V\) is bounded. The first observation is that if \(x\)\(\delta \)-sees \(A\), then \(x\)\(\delta \)-sees \(y\) for any \(y\)\(\delta \)-seen by \(A\); indeed, if \(y\in x+{\mathcal {Y}}^\blacktriangleleft _{\delta }\) then \((y+{\mathcal {Y}}^\blacktriangleleft _{\delta } )\subset (x+{\mathcal {Y}}^\blacktriangleleft _{\delta })\). The second observation is that if \(x\) is not \(\delta \)-blocked by \(A\), then so are all \(y\in x+{\mathcal {Y}}^\blacktriangleleft _{\delta }\). Now, as \(A\) is bounded, there exist \(a,b\in {\mathbb {R}}^d\) such that

  • \(a\)\(\delta \)-sees \(A\),

  • \(b\) is not \((\delta +\delta ')\)-blocked by \(A\).

The two observations made before imply that \(V\) is a subset of \((a+{\mathcal {Y}}^\blacktriangleleft _{\delta }) \cap (b+{\mathcal {Y}}^\blacktriangleleft _{\delta +\delta '})^c\). The final observation is that, as \(\delta '>0\), the previous set is bounded. This implies the lemma. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ott, S. Sharp Asymptotics for the Truncated Two-Point Function of the Ising Model with a Positive Field. Commun. Math. Phys. 374, 1361–1387 (2020). https://doi.org/10.1007/s00220-019-03596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03596-0

Navigation