Skip to main content
Log in

Lambert-W Solves the Noncommutative \(\varPhi ^4\)-Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The closed Dyson–Schwinger equation for the 2-point function of the noncommutative \(\lambda \phi ^4_2\)-model is rearranged into the boundary value problem for a sectionally holomorphic function in two variables. We prove an exact formula for a solution in terms of Lambert’s W-function. This solution is holomorphic in \(\lambda \) inside a domain which contains \((-1/\log 4,\infty )\). Our methods include the Hilbert transform, perturbation series and Lagrange–Bürmann resummation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A behaviour \(\sum _n \sim V\) is assumed so that the sums in (8) are kept.

  2. For Hölder-continuous G(ab), this is in fact just the ordinary integral. But since we will pull the numerators apart later, we write principal values already here.

  3. RW would like to thank Alexander Hock for pointing out this reference.

  4. Our case is isomorphic to the moduli space \(\mathfrak {M}_{0,5}\) of genus zero curves with 5 marked points.

  5. HyperInt can also find (23) by integrating directly the perturbative expansion of (1). Furthermore, HyperInt computes \(H=\int _0^{\infty } \frac{\mathrm {d}^{}p}{p-a} \tau _b(p)\) as an integral over real p, adding an imaginary part \({\mathrm {i}}\epsilon \delta _a\) to a. The Hilbert transform of \(\tau _b(a)\) is thus the real part of H (i.e. drop the \(\delta _a\)-term).

  6. At first we were unaware of (17c) and calculated the much harder \(\int _0^\infty \mathrm {d}^{}p \;e^{-{\mathscr {H}}_p[\tau _a]}\sin \tau _a(p)\).

  7. It is well-known that the expansion of Lambert-W at infinity is related to Stirling numbers, see [7]. However, we did not find the precise form we obtain here in the literature.

  8. These formulae are reproduced as (4c) and (4b) in the beginning.

  9. Cochleoid refers to ‘snail-shaped’. Its reciprocal \(\frac{2b}{\pi } \frac{\theta }{\sin \theta } e^{{\mathrm {i}}\theta }\) is the quadratrix of Hippias used in classical antiquity to trisect an angle or to square a circle.

References

  1. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The three-loop splitting functions \(P_{qg}^{(2)}\) and \(P_{gg}^{(2, N_F)}\). Nucl. Phys. B 922, 1–40 (2017). https://doi.org/10.1016/j.nuclphysb.2017.06.004

    Google Scholar 

  2. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54(8), 082301 (2013). https://doi.org/10.1063/1.4811117

    Google Scholar 

  3. Bogner, C.: MPL—a program for computations with iterated integrals on moduli spaces of curves of genus zero. Comput. Phys. Commun. 203, 339–353 (2016). https://doi.org/10.1016/j.cpc.2016.02.033

    Google Scholar 

  4. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisoněk, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001). https://doi.org/10.1090/S0002-9947-00-02616-7

    Google Scholar 

  5. Brown, F.C.S.: Multiple zeta values and periods of moduli spaces \(\overline{\mathfrak{M}}_{0, n}\). Ann. Sci. Éc. Norm. Supér. (4) 42(3), 371–489 (2009)

    Google Scholar 

  6. Bürmann, H.: Essai de calcul fonctionnaire aux constantes ad-libitum. Mem. Inst. Nat. Sci. Arts. Sci. Math. Phys. 2, 13–17 (1799)

    Google Scholar 

  7. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996). https://doi.org/10.1007/BF02124750

    Google Scholar 

  8. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative \(\phi ^4_4\) theory to all orders. Phys. Lett. B 649, 95–102 (2007). https://doi.org/10.1016/j.physletb.2007.04.007

    Google Scholar 

  9. Gakhov, F.D.: Boundary Value Problems. Pergamon Press, Oxford (1966)

    Google Scholar 

  10. Gracia-Bondía, J.M., Várilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. I. J. Math. Phys. 29, 869–879 (1988). https://doi.org/10.1063/1.528200

    Google Scholar 

  11. Grosse, H., Hock, A., Wulkenhaar, R.: Solution of all quartic matrix models (2019). arXiv:1906.04600 [math-ph]

  12. Grosse, H., Hock, A., Wulkenhaar, R.: Solution of the self-dual \(\varPhi ^4\) QFT-model on four-dimensional Moyal space (2019). arXiv:1908.04543 [math-ph]

  13. Grosse, H., Sako, A., Wulkenhaar, R.: Exact solution of matricial \(\varPhi ^3_2\) quantum field theory. Nucl. Phys. B 925, 319–347 (2017). https://doi.org/10.1016/j.nuclphysb.2017.10.010

    Google Scholar 

  14. Grosse, H., Sako, A., Wulkenhaar, R.: The \(\varPhi ^3_4\) and \(\varPhi ^3_6\) matricial QFT models have reflection positive two-point function. Nucl. Phys. B 926, 20–48 (2018). https://doi.org/10.1016/j.nuclphysb.2017.10.022

    Google Scholar 

  15. Grosse, H., Wulkenhaar, R.: Renormalisation of \(\phi ^4\)-theory on noncommutative \(\mathbb{R}^2\) in the matrix base. JHEP 2003, 019 (2003). https://doi.org/10.1088/1126-6708/2003/12/019

    Google Scholar 

  16. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \(\phi ^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys. 329(3), 1069–1130 (2014). https://doi.org/10.1007/s00220-014-1906-3

    Google Scholar 

  17. Grosse, H., Wulkenhaar, R.: On the fixed point equation of a solvable 4D QFT model. Vietnam J. Math. 44(1), 153–180 (2016). https://doi.org/10.1007/s10013-015-0174-7

    Google Scholar 

  18. Henn, J.M., Smirnov, V.A.: Analytic results for two-loop master integrals for Bhabha scattering I. JHEP 1311, 041 (2013). https://doi.org/10.1007/JHEP11(2013)041

    Google Scholar 

  19. Kölbig, K.S.: Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17(5), 1232–1258 (1986). https://doi.org/10.1137/0517086

    Google Scholar 

  20. Kölbig, K.S., Mignaco, J.A., Remiddi, E.: On Nielsen’s generalized polylogarithms and their numerical calculation. BIT Numer. Math. 10(1), 38–73 (1970). https://doi.org/10.1007/BF01940890

    Google Scholar 

  21. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992). https://doi.org/10.1007/BF02099526

    Google Scholar 

  22. Lagrange, J.L.: Nouvelle méthode pour résoudre des équations littérales par le moyen de séries. Mém. Acad. Roy. des Sci. et Belles-Lettres de Berlin 24, 5–73 (1770)

    Google Scholar 

  23. Lambert, J.H.: Observationes variae in mathesin puram. Acta Helv. Physico-mathematico-anatomico-botanico-medica 3, 128–168 (1758)

    Google Scholar 

  24. Laporta, S.: High-precision calculation of the 4-loop contribution to the electron \(g-2\) in QED. Phys. Lett. B 772, 232–238 (2017). https://doi.org/10.1016/j.physletb.2017.06.056

    Google Scholar 

  25. Maplesoft, a division of Waterloo Maple Inc.: Maple 2015

  26. Nielsen, N.: Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Kais. Leopoldinisch-Carol. Dtsch. Akad. Naturforscher 90(3), 121–212 (1909)

    Google Scholar 

  27. Panzer, E.: Feynman integrals and hyperlogarithms. Ph.D. thesis, Humboldt-Universität zu Berlin (2014). https://doi.org/10.18452/17157

  28. Panzer, E.: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Comput. Phys. Commun. 188, 148–166 (2015). https://doi.org/10.1016/j.cpc.2014.10.019

    Google Scholar 

  29. Panzer, E., Schnetz, O.: The Galois coaction on \(\phi ^4\) periods. CNTP 11(3), 657–705 (2017). https://doi.org/10.4310/CNTP.2017.v11.n3.a3

    Google Scholar 

  30. Schneider, C.: Modern summation methods for loop integrals in quantum field theory: the packages sigma, evaluate MultiSums and SumProduction. J. Phys. Conf. Ser. 523, 012037 (2014). https://doi.org/10.1088/1742-6596/523/1/012037

    Google Scholar 

  31. Todorov, I.: Polylogarithms and multizeta values in massless Feynman amplitudes. In: Dobrev, V. (ed.) Lie Theory and Its Applications in Physics, vol. 111, pp. 155–176. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-55285-7_10

    Google Scholar 

  32. Tricomi, F.G.: Integral Equations. Interscience, New York (1957)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Spencer Bloch and Dirk Kreimer for invitation to the Les Houches summer school “Structures in local quantum field theories” where the decisive results of this paper were obtained. Discussions during this school in particular with Johannes Blümlein, David Broadhurst and Gerald Dunne contributed valuable ideas. RW would like to thank Alexander Hock for pointing out reference [9] and Harald Grosse for the long-term collaboration which preceded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimar Wulkenhaar.

Additional information

Communicated by M. Salmhofer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panzer, E., Wulkenhaar, R. Lambert-W Solves the Noncommutative \(\varPhi ^4\)-Model. Commun. Math. Phys. 374, 1935–1961 (2020). https://doi.org/10.1007/s00220-019-03592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03592-4

Navigation