Skip to main content
Log in

A Many-Body Index for Quantum Charge Transport

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an index for pairs of a unitary map and a clustering state on many-body quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued and stable under perturbations. In general, the index measures the charge transport across a fiducial line. We show that it reduces to (i) an index of projections in the case of non-interacting fermions, (ii) the charge density for translational invariant systems, and (iii) the quantum Hall conductance in the two-dimensional setting without any additional symmetry. Example (ii) recovers the Lieb–Schultz–Mattis theorem, and (iii) provides a new and short proof of quantization of Hall conductance in interacting many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The symbols \(\Gamma \) and \(\,\mathrm {d}\Gamma \) (not to be confused with the spatial region \(\Gamma \)) are functors mapping one-particle operators to many-body operators, see e.g. [43].

References

  1. Affleck, I., Lieb, E.H.: A proof of part of Haldane’s conjecture. Lett. Math. Phys. 12, 57–69 (1986)

    ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A 31(32), 6783 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Avron, J.E., Seiler, R.: Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett. 54(4), 259–262 (1985)

    ADS  MathSciNet  Google Scholar 

  4. Avron, J.E., Seiler, R., Simon, B.: Quantum Hall effect and the relative index for projections. Phys. Rev. Lett. 65(17), 2185–2188 (1990)

    ADS  Google Scholar 

  5. Avron, J.E., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Bachmann, S., Bols, A., De Roeck, W., Fraas, M.: Quantization of conductance in gapped interacting systems. Ann. Henri Poincaré 19(3), 695–708 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bachmann, S., De Roeck, W., Fraas, M.: The adiabatic theorem and linear response theory for extended quantum systems. Commun. Math. Phys. 361(3), 997–1027 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bachmann, S., Michalakis, S., Nachtergaele, S., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bachmann, S., Nachtergaele, B.: On gapped phases with a continuous symmetry and boundary operators. J. Stat. Phys. 154(1–2), 91–112 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bohm, D.: Note on a theorem of Bloch concerning possible causes of superconductivity. Phys. Rev. 75(3), 502 (1949)

    ADS  MATH  Google Scholar 

  12. Bräunlich, G., Graf, G.M., Ortelli, G.: Equivalence of topological and scattering approaches to quantum pumping. Commun. Math. Phys. 295(1), 243–259 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bru, J.-B., de Siqueira Pedra, W.: Lieb–Robinson Bounds for Multi-commutators and Applications to Response Theory. SpringerBriefs in Mathematical Physics. Springer, Berlin (2017)

    MATH  Google Scholar 

  14. Büttiker, M., Thomas, H., Prêtre, A.: Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B. 94(1–2), 133–137 (1994)

    ADS  Google Scholar 

  15. Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011)

    ADS  Google Scholar 

  16. Cirac, J.I., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix product unitaries: structure, symmetries, and topological invariants. J. Stat. Mech. 2017(8), 083105 (2017)

    MathSciNet  Google Scholar 

  17. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903)

    MathSciNet  MATH  Google Scholar 

  18. Fröhlich, J., Studer, U.M., Thiran, E.: A classification of quantum Hall fluids. J. Stat. Phys. 86(3), 821–897 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Giuliani, A., Mastropietro, V., Porta, M.: Universality of the Hall conductivity in interacting electron systems. Commun. Math. Phys. 349(3), 1107–1161 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Hastings, M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    ADS  Google Scholar 

  22. Hastings, M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93(14), 140402 (2004)

    ADS  Google Scholar 

  23. Hastings, M.B.: Locality in quantum systems. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Volume XCV of Ecole de Physique des Houches, pp. 171–212. Oxford University Press, Oxford (2012)

    Google Scholar 

  24. Hastings, M.B., Michalakis, S.: Quantization of Hall conductance for interacting electrons on a torus. Commun. Math. Phys. 334, 433–471 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Hastings, M.B., Wen, X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72(4), 045141 (2005)

    ADS  Google Scholar 

  26. Heinzner, P., Huckleberry, A., Zirnbauer, M.R.: Symmetry classes of disordered fermions. Commun. Math. Phys. 257(3), 725–771 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Kitaev, A.: Periodic table for topological insulators and superconductors. In: AIP Conference Proceedings, vol. 1134 (2009)

  29. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)

    ADS  MathSciNet  Google Scholar 

  30. Lieb, E.H., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Lu, Y.-M., Ran, Y., Oshikawa, M.: Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice. arXiv preprint arXiv:1705.09298 (2017)

  32. Matsugatani, A., Ishiguro, Y., Shiozaki, K., Watanabe, H.: Universal relation among the many-body Chern number, rotation symmetry, and filling. Phys. Rev. Lett. 120(9), 096601 (2018)

    ADS  MathSciNet  Google Scholar 

  33. Monaco, D., Teufel, S.: Adiabatic currents for interacting electrons on a lattice. Rev. Math. Phys. 31(3), 1950009 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Nachtergaele, B., Sims, R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Nachtergaele, B., Sims, R., Young, A.: Lieb–Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems. arXiv preprint arXiv:1705.08553v2 (2017)

  36. Niu, Q., Thouless, D.J.: Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17(12), 2453 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Ogata, Y.: A \({\mathbb{Z}} _2\)-index of symmetry protected topological phases with time reversal symmetry for quantum spin chains. arXiv preprint arXiv:1810.01045 (2018)

  38. Ogata, Y., Tasaki, H.: Lieb–Schultz–Mattis type theorems for quantum spin chains without continuous symmetry. Commun. Math. Phys. arXiv preprint arXiv:1808.08740 (2019)

  39. Oshikawa, M.: Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84(7), 1535 (2000)

    ADS  Google Scholar 

  40. Pérez-García, D., Wolf, M.M., Sanz, M., Verstraete, F., Cirac, J.I.: String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100(16), 167202 (2008)

    ADS  Google Scholar 

  41. Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85(7), 075125 (2012)

    ADS  Google Scholar 

  42. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators. Mathematical Physics Studies. Springer, Berlin (2016)

    MATH  Google Scholar 

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, London (1975)

    MATH  Google Scholar 

  44. Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78(19), 195125 (2008)

    ADS  Google Scholar 

  45. Shiozaki, K., Shapourian, H., Gomi, K., Ryu, S.: Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries. Phys. Rev. B 98(3), 035151 (2018)

    ADS  Google Scholar 

  46. Thouless, D.J.: Quantization of particle transport. Phys. Rev. B 27(10), 6083–6087 (1983)

    ADS  MathSciNet  Google Scholar 

  47. Watanabe, H.: A proof of the Bloch theorem for lattice models. arXiv preprint arXiv:1904.02700 (2019)

  48. Watanabe, H., Po, H.C., Vishwanath, A., Zaletel, M.: Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl. Acad. Sci. USA 112(47), 14551–14556 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Ogata for inspiring discussions. This research was supported in part by funding from the Simons Foundation and the Centre de Recherches Mathématiques, through the Simons-CRM scholar-in-residence program. The work of S.B. was supported by NSERC of Canada. W.D.R. acknowledges the support of the Flemish Research Fund FWO under Grant G076216N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bachmann.

Additional information

Communicated by R. Seiringer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, S., Bols, A., De Roeck, W. et al. A Many-Body Index for Quantum Charge Transport. Commun. Math. Phys. 375, 1249–1272 (2020). https://doi.org/10.1007/s00220-019-03537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03537-x

Navigation