Skip to main content
Log in

Unitarity of the Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, II

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is the second part in a two-part series of papers constructing a unitary structure for the modular tensor category associated to a unitary rational vertex operator algebra (VOA). We define, for a unitary rational vertex operator algebra V, a non-degenerate sesquilinear form \(\Lambda \) on each vector space of intertwining operators. We give two sets of criteria for the positivity of \(\Lambda \), both concerning the energy bounds condition of vertex operators and intertwining operators. These criteria can be applied to many familiar examples, including unitary Virasoro VOAs, unitary affine VOAs of type A, D, and more. Having shown that \(\Lambda \) is an inner product, we prove that \(\Lambda \) induces a unitary structure on the modular tensor category of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The primitive form of \(\Lambda \) appeared in [Was98]. See the discussion in Remark 6.4.

  2. By proposition 3.4, if an intertwining operator is energy bounded, then so is its adjoint intertwining operator. Therefore, it suffices to require that \({\mathcal {F}}\cup \overline{{\mathcal {F}}}\), instead of \({\mathcal {F}}\), generates the monoidal category of V, where \(\overline{{\mathcal {F}}}=\{W_{{\overline{i}}}:i\in {\mathcal {F}} \}\). Moreover, we are also interested in the general case where \({\mathcal {F}}\cup \overline{{\mathcal {F}}}\) generates, not the whole tensor category of V, but a smaller tensor subcategory. In this case, this tensor subcategory might not be modular, but only a ribbon fusion category. In Sect. 5.3, the statement of conditions A and B will take care of this general case.

  3. This theorem is also proved in [CWX]. We would like to thank Sebastiano Carpi for letting us know this fact.

References

  1. Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. arXiv preprint arXiv:alg-geom/9405001 (1994)

  2. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From Vertex Operator Algebras to Conformal Nets and Back, Memoirs of the American Mathematical Society, Vol. 254, No. 1213 (2018)

  4. Carpi, S., Weiner, M., Xu, F.: From vertex operator algebra modules to representations of conformal nets. To appear

  5. Carpi, S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Connes, A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2), 153–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, C., Lin, X.: Unitary vertex operator algebras. J. Algebra 397, 252–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52(18), 1575 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Goddard, P., Kent, A., Olive, D.: Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103(1), 105–119 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gui, B.: Unitarity of the modular tensor categories associated to unitary vertex operator algebras, I. Commun. Math. Phys. 366, 333–396 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gui, B.: Energy bounds condition for intertwining operators of type \(B\), \(C\), and \(G_2\) unitary affine vertex operator algebras. arXiv:1809.07003

  16. Huang, Y.Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, I. Sel. Math. 1(4), 699 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y.Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, II. Sel. Math. 1(4), 757 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Y.Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Algebra 100(1–3), 141–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Y.Z., Kong, L.: Full field algebras. Commun. Math. Phys. 272(2), 345–396 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Huang, Y.Z., Kong, L.: Modular invariance for conformal full field algebras. Trans. Am. Math. Soc. 362(6), 3027–3067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y.Z., Lepowsky, J.: Tensor categories and the mathematics of rational and logarithmic conformal field theory. J. Phys. A Math. Theor. 46(49), 494009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, Y.Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Algebra 100(1–3), 173–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, Y.Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7(03), 375–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y.Z.: Differential equations, duality and modular invariance. Commun. Contemp. Math. 7(05), 649–706 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, Y.Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10(01), 103–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Y.Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10(supp01), 871–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jones, V.F.: von Neumann algebras. Script available at http://math.vanderbilt.edu/jonesvf/ (2003)

  28. Kawahigashi, Y., Longo, R.: Classification of local conformal nets: case c<1. Ann. Math. 160(2), 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras: Advanced Theory, vol. 2. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  30. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras (I). Academic Press, New York (1983)

    MATH  Google Scholar 

  31. Kac, V.G.: Infinite-Dimensional Lie Algebras, vol. 44. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  32. Kirillov Jr., A.: On an inner product in modular tensor categories. J. Am. Math. Soc. 9(4), 1135–1169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Loke, T.M.: Operator algebras and conformal field theory of the discrete series representations of Diff (S’1) (Doctoral dissertation, University of Cambridge) (1994)

  34. Nelson, E.: Analytic vectors. Ann. Math. 70, 572–615 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Il Nuovo Cimento (1955–1965), 22(5), pp. 1051–1068 (1961)

    Article  ADS  MATH  Google Scholar 

  36. Takesaki, M.: Theory of Operator Algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences (2002)

  37. Takesaki, M.: Theory of Operator Algebras II, vol. 125. Springer, Berlin (2013)

    MATH  Google Scholar 

  38. Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173(2), 265–311 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Toledano-Laredo, V.: Fusion of Positive Energy Representations of lspin (2n). arXiv preprint arXiv:math/0409044 (2004)

  40. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Integr. Syst. Quantum Field Theory Stat. Mech. 19, 459–566 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Ueno, K.: Conformal Field Theory with Gauge Symmetry, vol. 24. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  42. Wang, W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 1993(7), 197–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wassermann, A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU (N) using bounded operators. Invent. Math. 133(3), 467–538 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by NSF Grant DMS-1362138. I am grateful to my advisor, professor Vaughan Jones, for his consistent support throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gui.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, B. Unitarity of the Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, II. Commun. Math. Phys. 372, 893–950 (2019). https://doi.org/10.1007/s00220-019-03534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03534-0

Navigation