Skip to main content
Log in

Generalized Theta Functions, Strange Duality, and Odd Orthogonal Bundles on Curves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper studies spaces of generalized theta functions for odd orthogonal bundles with nontrivial Stiefel–Whitney class and the associated space of twisted spin bundles. In particular, we prove a Verlinde type formula and a dimension equality that was conjectured by Oxbury–Wilson. Modifying Hitchin’s argument, we also show that the bundle of generalized theta functions for twisted spin bundles over the moduli space of curves admits a flat projective connection. We furthermore address the issue of strange duality for odd orthogonal bundles, and we demonstrate that the naive conjecture fails in general. A consequence of this is the reducibility of the projective representations of spin mapping class groups arising from the Hitchin connection for these moduli spaces. Finally, we answer a question of Nakanishi–Tsuchiya about rank-level duality for conformal blocks on the pointed projective line with spin weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T.: Strange Duality for Parabolic Symplectic Bundles on a Pointed Projective Line, International Mathematics Research Notices, Art. ID rnn121, 47 (2008)

  2. Abe, T.: Moduli of oriented orthogonal sheaves on a nodal curve. Kyoto J. Math. 53(1), 55–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersen, J.E.: Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quantization. Quantum Topol. 3(3–4), 293–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, J.E., Fjelstad, J.: Reducibility of quantum representations of mapping class groups. Lett. Math. Phys. 91(3), 215–239 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Andersen, J.E., Masbaum, G.: Involutions on moduli spaces and refinements of the Verlinde formula. Math. Ann. 314(2), 291–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atiyah, M., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Axelrod, S., Pietra, S.D., Witten, E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alexander Bais, F., Bouwknegt, P.G.: A classification of subgroup truncations of the bosonic string. Nucl. Phys. B 279(3–4), 561–570 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Beauville, A.: Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Mathematical Sciences Research Institute Publications, vol. 28, pp. 17–33. Cambridge University Press, Cambridge (1995)

  10. Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, vol. 9, , pp. 75–96. Bar-Ilan University, Ramat Gan (1996)

  11. Beauville, A.: Orthogonal bundles on curves and theta functions. Ann. Inst. Fourier (Grenoble) 56(5), 1405–1418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164(2), 385–419 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of \(G\)-bundles on a curve. Compos. Math. 112(2), 183–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Belkale, P.: The strange duality conjecture for generic curves. J. Am. Math. Soc. 21(1), 235–258 (2008). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  16. Belkale, P.: Strange duality and the Hitchin/WZW connection. J. Differ. Geom. 82(2), 445–465 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Belkale, P.: Orthogonal Bundles, Theta Characteristics and Symplectic Strange Duality, Compact Moduli Spaces and Vector Bundles, Contemporary Mathematics, vol. 564, pp. 185–193. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  18. Boutot, J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88(1), 65–68 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Boysal, A., Pauly, C.: Strange duality for Verlinde spaces of exceptional groups at level one. Int. Math. Res. Not. IMRN 2010, 595–618 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Bradlow, S.B., García-Prada, O., Gothen, P.B.: Higgs bundles for the non-compact dual of the special orthogonal group. Geom. Dedic. 175, 1–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donagi, R., Pantev, T.: Langlands duality for Hitchin systems. Invent. Math. 189(3), 653–735 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Donagi, R., Tu, L.W.: Theta functions for \({\rm SL}(n)\) versus \({\rm GL}(n)\). Math. Res. Lett. 1(3), 345–357 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Drinfeld, V.G., Simpson, C.: \(B\)-structures on \(G\)-bundles and local triviality. Math. Res. Lett. 2(6), 823–829 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fakhruddin, N.: Chern Classes of Conformal Blocks, Compact Moduli Spaces and Vector Bundles, Contemporary Mathematics, vol. 564, pp. 145–176. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  25. Faltings, G.: Stable \(G\)-bundles and projective connections. J. Algebraic Geom. 2(3), 507–568 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347–374 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Frenkel, I.B.: Spinor representations of affine Lie algebras. Proc. Natl. Acad. Sci. U.S.A. 77(11, part 1), 6303–6306 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fuchs, J., Schweigert, C.: The action of outer automorphisms on bundles of chiral blocks. Commun. Math. Phys. 206(3), 691–736 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). (A first course, Readings in Mathematics)

    Google Scholar 

  30. Grauert, H., Riemenschneider, O.: Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math. 11, 263–292 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hartshorne, R.: Algebraic geometry, vol. 52. Graduate Texts in Mathematics, Springer, New York (1977)

    Book  MATH  Google Scholar 

  32. Hasegawa, K.: Spin module versions of Weyl’s reciprocity theorem for classical Kac–Moody Lie algebras—an application to branching rule duality. Publ. Res. Inst. Math. Sci. 25(5), 741–828 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hitchin, N.: Flat connections and geometric quantization. Commun. Math. Phys. 131(2), 347–380 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Hitchin, N.: Langlands duality and \(G_2\) spectral curves. Q. J. Math. 58(3), 319–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  37. Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. U.S.A. 78(6, part 1), 3308–3312 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kac, V.G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70(2), 156–236 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kempf, G., Ness, L.: Tensor products of fundamental representations. Can. J. Math. 40(3), 633–648 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kumar, S.: Demazure character formula in arbitrary Kac–Moody setting. Invent. Math. 89(2), 395–423 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kumar, S.: Infinite Grassmannians and moduli spaces of \(G\)-bundles, Vector bundles on curves—new directions (Cetraro, 1995). Lecture Notes in Mathematics, vol. 1649, pp. 1–49. Springer, Berlin (1997)

  42. Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of \(G\)-bundles. Math. Ann. 308(1), 155–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of \(G\)-bundles. Math. Ann. 300(1), 41–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Laszlo, Y.: Hitchin’s and WZW connections are the same. J. Differ. Geom. 49(3), 547–576 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections. Ann. Sci. École Norm. Sup. (4) 30(4), 499–525 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Littelmann, P.: A generalization of the Littlewood–Richardson rule. J. Algebra 130(2), 328–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Marian, A., Oprea, D.: The level-rank duality for non-abelian theta functions. Invent. Math. 168(2), 225–247 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Maruyama, M.: Elementary transformations in the theory of algebraic vector bundles, Algebraic geometry (La Rábida, 1981). Lecture Notes in Mathematics, vol. 961, pp. 241–266. Springer, Berlin (1982)

  49. Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody générales, Astérisque, no. 159–160, 267 (1988)

  50. Mukhopadhyay, S.: Rank-level duality of conformal blocks for odd orthogonal Lie algebras in genus 0. Trans. Am. Math. Soc. 368(9), 6741–6778 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mukhopadhyay, S.: Strange duality of Verlinde spaces for \(G_2\) and \(F_4\). Math. Z. 283(1–2), 387–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mukhopadhyay, S., Wentworth, R.: Spectral data for spin Higgs bundles. Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rny296

  53. Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4) 4, 181–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  54. Naculich, S.G., Schnitzer, H.J.: Duality relations between \({\rm SU}(N)_k\) and \({\rm SU}(k)_N\) WZW models and their braid matrices. Phys. Lett. B 244(2), 235–240 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  55. Nakanishi, T., Tsuchiya, A.: Level-rank duality of WZW models in conformal field theory. Commun. Math. Phys. 144(2), 351–372 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Oxbury, W.M.: Spin Verlinde spaces and Prym theta functions. Proc. Lond. Math. Soc. (3) 78(1), 52–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oxbury, W.M., Wilson, S.M.J.: Reciprocity laws in the Verlinde formulae for the classical groups. Trans. Am. Math. Soc. 348(7), 2689–2710 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pauly, C., Ramanan, S.: A duality for spin Verlinde spaces and Prym theta functions. J. Lond. Math. Soc. (2) 63(3), 513–532 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84(1), 217–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ramanathan, A.: Moduli for principal bundles over algebraic curves. II. Proc. Indian Acad. Sci. Math. Sci. 106(4), 421–449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Scheja, G.: Riemannsche Hebbarkeitssätze für Cohomologieklassen. Math. Ann. 144, 345–360 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  62. Slodowy, P.: On the geometry of Schubert varieties attached to Kac–Moody Lie algebras. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conference Proceedings, vol. 6, pp. 405–442. American Mathematical Society, Providence (1986)

  63. Swinarski, D.: conformalblocks: a macaulay2 package for computing conformal block divisors (2010). http://www.math.uiuc.edu/Macaulay2/

  64. Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173(2), 265–311 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Thaddeus, M.: Conformal field theory and the cohomology of the moduli space of stable bundles. J. Differ. Geom. 35(1), 131–149 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.) Integrable Systems in Quantum Field Theory and Statistical Mechanics, Advanced Studies in Pure Mathematics, vol. 19, pp. 459–566. Academic Press, Boston (1989)

    Google Scholar 

  67. van Geemen, B., de Jong, A.: On Hitchin’s connection. J. Am. Math. Soc. 11(1), 189–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Belkale, I. Biswas, P. Brosnan and T. Pantev for useful discussions and suggestions. Additional thanks to J. Andersen, S. Bradlow, J. Martens, and L. Schaposnik for their valuable input on aspects of this work. The referee made useful suggestions for improvements to the exposition and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnava Mukhopadhyay.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.M. was supported in part by a Simons Travel Grant and by NSF Grant DMS-1361159 (PI: Patrick Brosnan). R.W. was supported in part by NSF Grant DMS-1406513. The authors also acknowledge support from NSF Grants DMS-1107452, -1107263, -1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network).

Appendix A: Computations in the Clifford algebra

Appendix A: Computations in the Clifford algebra

In this section, we compute some vectors in the highest weight modules as explicit elements in the infinite dimensional Clifford algebra.

1.1 A.1. Action of \(L(B^{i}_j)\)

Consider the rectangle \(r\times s\) as a Young diagram Y where the rows are indexed by integer in \(\{1,\ldots , r\}\) and the columns by \(\{-s,\ldots ,-1\}\). Let (ij) be the coordinates of Y and let \(v:= \bigwedge _{\tilde{Y}_{i,j}=\,\blacksquare }\phi _{i,j}\) (cf. Sect. 8.4).

Proposition A.1

Let v as before be the highest weight vector of the component with highest weight \((\omega _r, (2r+1)\omega _s)\). Let \(0\le k\le m\le r\), then

$$\begin{aligned}&L(B^{-k}_{(k+1)})L(B^{-(k+2)}_{k+3})\cdots L(B^{-(m-3)}_{m-2})L(B^{-(m-1)}_{m})\cdot v\\&\quad =\phi _{k,0}\wedge \phi _{k+1,0}\wedge \cdots \wedge \phi _{m,0}\wedge v\ . \end{aligned}$$

1.2 A.2 Action of \(R^k(B^0_1)\)

Let \(v_k=\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\cdots \phi ^{k,1}(-\tfrac{1}{2} )\cdot 1\). In this section, we want to give explicit expressions for \(R^k(B^i_j)v_k\). First, consider the case when \(k=1\).

Lemma A.2

Consider the highest weight vector \(\phi ^{1,1}(-\tfrac{1}{2} )\cdot 1\) of the component with highest weight \((\omega _1,\omega _1)\). Then \(R(B^0_1)\phi ^{1,1}(-\tfrac{1}{2} )\cdot 1=\phi ^{1,0}(-\tfrac{1}{2} )\).

Now we want to compute \(R^2(B^0_1)v_2\). We first have the following lemma

Lemma A.3

For the component \((\omega _2,2\omega _1)\), \(\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,2}(-\tfrac{1}{2} )\cdot 1\), is a highest weight vector. Moreover,

$$\begin{aligned} R(B^0_1)v_2= \phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )+\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\ . \end{aligned}$$
(A.1)

Proof

The proof is by a direct computation. As before, we know that \(R(B^0_1)\) acts as on the infinite dimensional Clifford algebra for \(\widehat{\mathfrak {so}}(2d+1)\). Hence,

$$\begin{aligned}&R(B^{0}_{1})\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} ) \\&\quad = \sum _{-r \le q\le r}\bigl [\phi ^{q,0}(-\tfrac{1}{2} )\phi _{q,1}(\tfrac{1}{2} )-\phi _{q,1}(-\tfrac{1}{2} )\phi ^{q,0}(\tfrac{1}{2} )\bigr ]\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\\&\quad = \sum _{-r \le q\le r}\bigl [\phi ^{q,0}(-\tfrac{1}{2} )\phi _{q,1}(\tfrac{1}{2} )\bigr ] \phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\\&\quad = \phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )-\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{1,1}(-\tfrac{1}{2} )\ . \end{aligned}$$

\(\square \)

Proposition A.4

We have:

$$\begin{aligned} R^2(B^0_1)v_2=2\left[ \phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\right) -\left( \phi ^{1,-1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )+\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,-1}(-\tfrac{1}{2} )\right] \ . \end{aligned}$$

Proof

Compute using (A.1),

$$\begin{aligned}&R(B^{0}_{1})\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\\&\quad = \sum _{-r \le q\le r}\bigl [\phi ^{q,0}(-\tfrac{1}{2} )\phi _{q,1}(\tfrac{1}{2} )-\phi _{q,1}(-\tfrac{1}{2} )\phi ^{q,0}(\tfrac{1}{2} )\bigr ]\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\\&\quad =-\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{1,0}(-\tfrac{1}{2} )-\phi _{-1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\\&\quad = \phi ^{1,0}(-\tfrac{1}{2} )\phi _{-2,0}(-\tfrac{1}{2} )+\phi ^{2,1}(-\tfrac{1}{2} )\phi _{-1,1}(-\tfrac{1}{2} )\\&R(B^{0}_{1})\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{1,1}(-\tfrac{1}{2} )\\&\quad = \sum _{-r \le q\le r}\bigl [\phi ^{q,0}(-\tfrac{1}{2} )\phi _{q,1}(\tfrac{1}{2} )-\phi _{q,1}(-\tfrac{1}{2} )\phi ^{q,0}(\tfrac{1}{2} )\bigr ]\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{1,1}(-\tfrac{1}{2} )\\&\quad =-\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )-\phi _{-2,1}(-\tfrac{1}{2} )\phi ^{1,1}(-\tfrac{1}{2} )\\&\quad = -\phi ^{1,0}(-\tfrac{1}{2} )\phi _{-2,0}(-\tfrac{1}{2} )-\phi ^{2,-1}(-\tfrac{1}{2} )\phi _{-1,-1}(-\tfrac{1}{2} )\ .\\ \end{aligned}$$

\(\square \)

We use the following calculation in the proof of strange duality for the pair \((\omega _2,\omega _r,\omega _r)\) and \((2\omega _1,(2r+1)\omega _s, (2r+1)\omega _s)\).

Lemma A.5

Let \( w=\phi _{1,0}\wedge \phi _{2,0}\wedge \bigwedge _{ 1\le i \le r, -s\le j\le -1}\phi _{i,j}\). Then the following hold in \(\mathcal {H}_{\omega _r}(\mathfrak {so}(2r+1))\otimes \mathcal {H}_{(2s+1)\omega _s}(\mathfrak {so}(2s+1))\):

$$\begin{aligned} B^{2,1}_{-1,1}w=B^{2,-1}_{-1,-1}w=0\ ;\ B^{1,0}_{-2,0}w=\bigwedge _{ 1\le i \le r, -s\le j\le -1}\phi _{i,j}\ . \end{aligned}$$

Next we compute \(R^3(B^0_1)v_3\). Our strategy is same as the previous steps.

Proposition A.6

We have:

$$\begin{aligned} R^3(B^0_1)v_3&=6\left[ \phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\right] -3\bigl [ \phi ^{1,-1}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )\\&\quad + \,\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,-1}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )+ \phi ^{1,-1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\\&\quad +\, \phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,-1}(-\tfrac{1}{2} ) + \phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,-1}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\\&\quad +\, \phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,-1}(-\tfrac{1}{2} )\bigr ]\ . \end{aligned}$$

Proof

The proof follows by applying the expression for \(R(B^0_1)\) successively:

$$\begin{aligned} R(B^0_1)v_3&=\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )+ \phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )\\&\qquad + \phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\ . \\ R^2(B^0_1)v_3&= 2\bigl (\phi ^{1,0}(-\tfrac{1}{2} )\phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )+\phi ^{1,0}(-\tfrac{1}{2} \phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\\&\qquad +\phi ^{1,1}(-\tfrac{1}{2} \phi ^{2,0}(-\tfrac{1}{2} )\phi ^{3,0}(-\tfrac{1}{2} )\bigr )\\&\qquad -\bigl (\phi ^{1,1}(-\tfrac{1}{2} \phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,-1}(-\tfrac{1}{2} )+\phi ^{1,1}(-\tfrac{1}{2} )\phi ^{2,-1}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )\\&\qquad +\phi ^{1,-1}(-\tfrac{1}{2} \phi ^{2,1}(-\tfrac{1}{2} )\phi ^{3,1}(-\tfrac{1}{2} )\bigr ). \end{aligned}$$

and acting once more by \(R(B^0_1)\). \(\quad \square \)

We now gather these calculations into the following algorithm:

  • If \(v_k=\phi ^{1,1}(-\tfrac{1}{2} )\cdots \phi ^{k,1}(-\tfrac{1}{2} )\), then the \(\mathfrak {h}_2\)-weight of \(R^k(B^0_1)v_k\) is zero, where \(\mathfrak {h}_2\) is the Cartan subalgebra of \(\mathfrak {so}(2s+1)\).

  • The expression for \(R(B^0_1)\), viewed as an operator on the Clifford module for \(\widehat{\mathfrak {so}}(2d+1)\), implies that

    • if \(v =\phi ^{1,a_1}(-\tfrac{1}{2} )\cdots \phi ^{k,a_k}(-\tfrac{1}{2} )\), where \(0\le a_1+\cdots +a_k\le k\), and each \(a_i\in \{-1,0,1\}\), then the action of \(R({B^0_1})\) on v is a sum of expressions of the form \(\phi ^{1,b_1}(-\tfrac{1}{2} )\cdots \phi ^{k,b_k}(-\tfrac{1}{2} )\), where exactly one of the \(b_i\)’s is different from \(a_i\);

    • the operator \(R(B^0_1)\) can change an \(a_i=1\) to \(b_i=0\), or \(a_i=0\) to \(b_i=-1\). In the latter case, this introduces a minus sign in front of the new expression. In particular for each expression \(\phi ^{1,b_1}(-\tfrac{1}{2} )\cdots \phi ^{k,b_k}(-\tfrac{1}{2} )\) appearing in \(R(B^0_1)v\), we get \(b_1+\cdots + b_k+1=a_1+\cdots +a_k\). For examples, see the previous lemmas.

  • Thus, applying the operator \(R(B^0_1)\) to \(v_k\), k-times, we get an expression which is a sum of terms of the form \((-1)^m\phi ^{1,c_1}(-\tfrac{1}{2} )\cdots \phi ^{k,c_k}(-\tfrac{1}{2} )\), with multiplicities, where \(c_1+\cdots +c_k=0\), and each \(-1\le c_i\le 1\), and m is the number of \((-1)\)’s appearing among the \(c_i\)’s.

  • The multiplicity of the expression \(\phi ^{1,0}(-\tfrac{1}{2} )\cdots \phi ^{k,0}(-\tfrac{1}{2} )\) is k!.

To summarize, we have the following.

Proposition A.7

As an element of \(\mathcal {H}_{\omega _k}(\mathfrak {so}(2r+1))\otimes \mathcal {H}_{k\omega _1}(\mathfrak {so}(2s+1))\), the vector \(R^k(B^0_1)v_k\) is of the form \(k!\phi ^{1,0}(-\tfrac{1}{2} )\cdots \phi ^{k,0}(-\tfrac{1}{2} )\), plus a sum of terms of the form \(B^{i,a}_{-j,b}(-1)w\), where \(i\ne j\) are positive integers and a, b are nonzero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Wentworth, R. Generalized Theta Functions, Strange Duality, and Odd Orthogonal Bundles on Curves. Commun. Math. Phys. 370, 325–376 (2019). https://doi.org/10.1007/s00220-019-03482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03482-9

Navigation