Skip to main content
Log in

Shifted Derived Poisson Manifolds Associated with Lie Pairs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the shifted analogue of the “Lie–Poisson” construction for \(L_\infty \) algebroids and we prove that any \(L_\infty \) algebroid naturally gives rise to shifted derived Poisson manifolds. We also investigate derived Poisson structures from a purely algebraic perspective and, in particular, we establish a homotopy transfer theorem for derived Poisson algebras. As an application, we prove that, given a Lie pair (LA), the space \(\hbox {tot}\Omega ^{\bullet }_A(\Lambda ^\bullet (L/A))\) admits a degree \((+1)\) derived Poisson algebra structure with the wedge product as associative multiplication and the Chevalley–Eilenberg differential \(d_A^{\hbox {Bott}}:\Omega ^{\bullet }_A(\Lambda ^\bullet (L/A))\rightarrow \Omega ^{\bullet +1}_A(\Lambda ^\bullet (L/A))\) as unary \(L_\infty \) bracket. This degree \((+1)\) derived Poisson algebra structure on \(\hbox {tot}\Omega ^{\bullet }_A(\Lambda ^\bullet (L/A))\) is unique up to an isomorphism having the identity map as first Taylor coefficient. Consequently, the Chevalley–Eilenberg hypercohomology \({\mathbb {H}}({{\,\mathrm{tot}\,}}\Omega ^{\bullet }_A(\Lambda ^\bullet (L/A)),d_A^{\hbox {Bott}})\) admits a canonical Gerstenhaber algebra structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. This means that the induced morphism of commutative algebras over \(\phi _0^\vee : C^{\infty }(\mathcal {M}_2)\rightarrow C^{\infty }(\mathcal {M}_1)\):

    $$\begin{aligned} \phi ^\vee : C^{\infty }({\mathcal {L}}_2[1])=\Gamma ({\hat{S}} ({\mathcal {L}}_2^\vee [-1]))\rightarrow C^{\infty }({\mathcal {L}}_1[1])=\Gamma ({\hat{S}} ({\mathcal {L}}_1^\vee [-1])) \end{aligned}$$

    commutes with the homological vector fields \(Q_1\) and \(Q_2\): \(Q_2\circ \phi ^\vee =\phi ^\vee \circ Q_1\). Here \(Q_1\) and \(Q_2\) are, respectively, homological vector fields on \({\mathcal {L}}_1[1]\) and \({\mathcal {L}}_2[1]\) corresponding to the \(L_\infty \) algebroid structures as in Proposition A.1.

  2. This means that the differential \(d_A^\nabla \) is compatible with the Gerstenhaber bracket:

    $$\begin{aligned} d_A^\nabla \{X,Y\} = \{d_A^\nabla X,Y\} +(-1)^{\left| X\right| +1}\{X,d_A^\nabla Y\}, \qquad \forall X,Y\in \Omega ^\bullet _{{A}}(\Lambda ^\bullet {B}). \end{aligned}$$

References

  1. Bandiera, R.: Descent of Deligne–Getzler \(\infty \)-groupoids (2017). arXiv:1705.02880

  2. Bandiera, R., Stiénon, M., Xu, P.: Polyvector fields and polydifferential operators associated with Lie pairs (2019). arXiv:1901.04602

  3. Bashkirov, D., Voronov, A.A.: The BV formalism for \(L_\infty \)-algebras. J. Homotopy Relat. Struct. 12(2), 305–327 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bonavolontà, G., Poncin, N.: On the category of Lie \(n\)-algebroids. J. Geom. Phys. 73, 70–90 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bordemann, M., Elchinger, O., Gutt, S., Makhlouf, A.: L-infinity formality check for the Hochschild complex of certain universal enveloping algebras (2018). arXiv:1807.03086

  6. Bott, R.: Lectures on characteristic classes and foliations. Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971). Notes by Lawrence Conlon, with two appendices by J. Stasheff, pp. 1–94. Lecture Notes in Mathematics, vol. 279, Springer, Berlin (1972)

  7. Brown, R.: The twisted Eilenberg–Zilber theorem. In: Simposio di Topologia (Messina), vol. 1965, pp. 33–37. Edizioni Oderisi, Gubbio (1964)

  8. Bruce, A.J.: From \(L_\infty \)-algebroids to higher Schouten/Poisson structures. Rep. Math. Phys. 67(2), 157–177 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Cattaneo, A.S., Felder, G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208(2), 521–548 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Stiénon, M., Ping, X.: From Atiyah classes to homotopy Leibniz algebras. Commun. Math. Phys. 341(1), 309–349 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Dolgushev, V.A., Hoffnung, A.E., Rogers, C.L.: What do homotopy algebras form? Adv. Math. 274, 562–605 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Dolgushev, V.A., Rogers, C.L.: A version of the Goldman–Millson theorem for filtered \(L_\infty \)-algebras. J. Algebra 430, 260–302 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Eilenberg, S., Mac Lane, S.: On the groups of \(H(\Pi, n)\). I. Ann. Math. (2) 58, 55–106 (1953)

    MathSciNet  Google Scholar 

  14. Fiorenza, D., Manetti, M.: \(L_\infty \) structures on mapping cones. Algebra Number Theory 1(3), 301–330 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Gualtieri, M., Matviichuk, M., Scott, G.: Deformation of Dirac structures via \(L_\infty \) algebras (2017). arXiv:1702.08837

  16. Gugenheim, V.K.A.M.: On the chain-complex of a fibration. Ill. J. Math. 16, 398–414 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra. II. Ill. J. Math. 35(3), 357–373 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Huebschmann, J.: Higher homotopies and Maurer–Cartan algebras: quasi-Lie–Rinehart, Gerstenhaber, and Batalin–Vilkovisky algebras. In: The Breadth of Symplectic and Poisson Geometry. Progress Mathematics, vol. 232, pp. 237–302. Birkhäuser, Boston (2005)

  19. Huebschmann, J.: Multi derivation Maurer–Cartan algebras and sh Lie–Rinehart algebras. J. Algebra 472, 437–479 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207(2), 245–280 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Huebschmann, J., Stasheff, J.D.: Formal solution of the master equation via HPT and deformation theory. Forum Math. 14(6), 847–868 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Humphreys, J.E.: Introduction to Lie algebras and representation theory. In: Graduate Texts in Mathematics, vol. 9. Springer, New York-Berlin, Second printing, revised (1978)

  23. Keller, F., Waldmann, S.: Formal deformations of Dirac structures. J. Geom. Phys. 57(3), 1015–1036 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Khudaverdian, H., Voronov, T.T.: Higher Poisson brackets and differential forms. Geometric methods in physics. In: AIP Conference Proceedings, vol. 1079, pp. 203–215. American Institute of Physics, Melville (2008)

  25. Khudaverdian, H., Voronov, T.T.: Thick morphisms, higher Koszul brackets, and \(L_\infty \)-algebroids (2018). arXiv:1808.10049

  26. Kjeseth, L.J.: BRST Cohomology and Homotopy Lie–Rinehart Pairs. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)—The University of North Carolina at Chapel Hill (1996)

  27. Kjeseth, L.J.: Homotopy Rinehart cohomology of homotopy Lie–Rinehart pairs. Homol. Homotopy Appl. 3(1), 139–163 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Lang, H., Sheng, Y., Xiaomeng, X.: Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids. Lett. Math. Phys. 107(5), 861–885 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Laurent-Gengoux, C., Lavau, S., Strobl, T. The universal Lie \(\infty \)-algebroid of a singular foliation (2018). arXiv:1806.00475

  31. Liao, H.-Y., Stiénon, M., Xu, P.: Formality theorem for \(\mathfrak{g}\)-manifolds. C. R. Math. Acad. Sci. Paris 355(5), 582–589 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Z.-J., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Lu, J.H.: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions. Duke Math. J. 86(2), 261–304 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  35. Mackenzie, K.C.H., Mokri, T.: Locally vacant double Lie groupoids and the integration of matched pairs of Lie algebroids. Geom. Dedicata 77(3), 317–330 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Manetti, M.: Lectures on deformations of complex manifolds (deformations from differential graded viewpoint). Rend. Mat. Appl. (7) 24(1), 1–183 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Mokri, T.: Matched pairs of Lie algebroids. Glasg. Math. J. 39(2), 167–181 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Yong-Geun, O., Park, J.-S.: Deformations of coisotropic submanifolds and strong homotopy Lie algebroids. Invent. Math. 161(2), 287–360 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Pridham, J.P.: Shifted Poisson and symplectic structures on derived \(N\)-stacks. J. Topol. 10(1), 178–210 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Pridham, J.P.: An outline of shifted Poisson structures and deformation quantisation in derived differential geometry (2018). arXiv:1804.07622

  41. Real, P.: Homological perturbation theory and associativity. Homol. Homotopy Appl. 2, 51–88 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Rinehart, G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)

    MathSciNet  MATH  Google Scholar 

  43. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–University of California, Berkeley (1999)

  44. Roytenberg, D.: Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61(2), 123–137 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Sati, H., Schreiber, U., Stasheff, J.D.: Twisted differential string and fivebrane structures. Commun. Math. Phys. 315(1), 169–213 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids. Commun. Contemp. Math. 19(3), 1650034 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Shih, W.: Homologie des espaces fibrés. Inst. Hautes Études Sci. Publ. Math. (13):88 (1962)

  48. Stiénon, M., Xu, P.: Fedosov dg manifolds associated with Lie pairs (2016). arXiv:1605.09656

  49. Ševera, P.: Private Communication

  50. Ševera, P.: Letters to Alan Weinstein about Courant algebroids (2017). arXiv:1707.00265

  51. Vaĭntrob, A.Y.: Lie algebroids and homological vector fields. Uspekhi Mat. Nauk 52(2), 161–162 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Vitagliano, L.: On the strong homotopy Lie–Rinehart algebra of a foliation. Commun. Contemp. Math. 16(6), 1450007 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Vitagliano, L.: On the strong homotopy associative algebra of a foliation. Commun. Contemp. Math. 17(2), 1450026 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Vitagliano, L.: Representations of homotopy Lie–Rinehart algebras. Math. Proc. Camb. Philos. Soc. 158(1), 155–191 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Voronov, T.T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3), 133–153 (2005)

    MathSciNet  MATH  Google Scholar 

  56. Voronov, T.T.: Higher derived brackets for arbitrary derivations. Travaux mathématiques. Fasc. XVI, Trav. Math., vol. 16, Univ. Luxemb., Luxembourg, pp. 163–186 (2005)

  57. Theodore, T.: "Nonlinear pullbacks" of functions and \(L_\infty \)-morphisms for homotopy Poisson structures. J. Geom. Phys. 111, 94–110 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Voronov, T.T.: Microformal geometry and homotopy algebras. Tr. Mat. Inst. Steklova 302(Topologiya i Fizika), 98–142 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Martin Bordemann, Oliver Elchinger, Camille Laurent-Gengoux, Matthew Peddie, Pavol Ševera, Jim Stasheff, and Luca Vitagliano for fruitful discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by NSFC Grant 11471179. Research partially supported by NSF Grants DMS-1406668 and DMS-1707545.

Appendices

Appendix A. \(L_\infty \) Algebroids and dg Manifolds

We recall some standard notions and results which we used throughout the paper. We mainly follow the conventions of Bruce [8], Voronov [55], and Lada–Markl [28].

The following proposition reveals a close relation between \(L_\infty \) algebroids and dg manifolds. See [8, 25].

Proposition A.1

Let \({\mathcal {L}}\rightarrow \mathcal {M}\) be a vector bundle of \({\mathbb {Z}}\)-graded manifolds. Then \({\mathcal {L}}\) is an \(L_\infty \) algebroid if and only if \({\mathcal {L}}[1]\) is a dg manifold whose homological vector field Q is tangent to the zero section \(0:\mathcal {M}\hookrightarrow {\mathcal {L}}[1]\).

The rest of the section is devoted to the proof of this proposition, where the set-up was used in the paper. We first start with the following

Lemma A.2

Let \({\mathcal {L}}\rightarrow \mathcal {M}\) be a vector bundle of \({\mathbb {Z}}\)-graded manifolds, and let k be a fixed integer. An \(L_\infty \) algebroid structure on \({\mathcal {L}}\rightarrow \mathcal {M}\) is equivalent to an \(L_\infty \) algebra structure on the \({\mathbb {K}}\)-vector space \(\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\) with structure maps

$$\begin{aligned} {\bar{\lambda }}_l: \Lambda ^l\big (\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\big ) \rightarrow \big (\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\big )[2-l] \end{aligned}$$

satisfying the Leibniz rule

$$\begin{aligned} {\bar{\lambda }}_l({w_1,w_2, \ldots ,w_{l-1},fw_l})&= {\bar{\lambda }}_l({w_1,w_2, \ldots ,w_{l-1}, f})w_l \nonumber \\&\quad +(-1)^{(l+\left| w_1\right| +\cdots +\left| w_{l-1}\right| ) \left| f\right| } f {\bar{\lambda }}_l({w_1,w_2, \ldots ,w_{l-1},w_l}) , \end{aligned}$$
(34)

for all \(w_1, \ldots ,w_l\in \Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\), and \(f\in C^{\infty }(\mathcal {M})\), and the following conditions:

  1. (1)

    \(\Gamma ({\mathcal {L}})\) is an \(L_\infty \) subalgebra of \(\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\);

  2. (2)

    \(C^{\infty }(\mathcal {M})[k]\) is an \(L_\infty \) ideal of \(\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\), i.e. \({\bar{\lambda }}_l(w_1,w_2, \ldots ,w_l)\in C^{\infty }(\mathcal {M})[k]\) if at least one of the arguments \(w_1,w_2,\dots ,w_l\) is in \(C^{\infty }(\mathcal {M})[k]\); and

  3. (3)

    \(C^{\infty }(\mathcal {M})[k]\) is abelian, i.e. \({\bar{\lambda }}_l(w_1,w_2, \ldots ,w_l)=0\) if at least two of the arguments \(w_1,w_2,\dots ,w_l\) are in \(C^{\infty }(\mathcal {M})[k]\).

Proof

Assume that \({\mathcal {L}}\) is an \(L_\infty \) algebroid with multi-brackets \((\lambda _l)_{l\geqslant 1}\) and multi-anchor maps \((\rho _l)_{l\geqslant 0}\) as in Definition 3.6. Define a sequence \(({\bar{\lambda }}_l)_{l\geqslant 1}\) of \({\mathbb {K}}\)-multilinear maps

$$\begin{aligned} {\bar{\lambda }}_l: \Lambda ^l\big (\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\big ) \rightarrow \big (\Gamma ({\mathcal {L}})\oplus C^{\infty }(\mathcal {M})[k]\big )[2-l] \end{aligned}$$

by the following relations:

  • \({\bar{\lambda }}_l(x_1, \ldots ,x_l)=0\) if at least two of the arguments \(x_1,\dots ,x_l\) are in \(C^{\infty }(\mathcal {M})[k]\);

  • \({\bar{\lambda }}_l(a_1, \ldots ,a_l)=\lambda _l(a_1, \ldots ,a_l)\), for all \(a_1, \ldots ,a_l\in \Gamma ({\mathcal {L}})\); and

  • \({\bar{\lambda }}_{l+1}(a_1, \ldots ,a_l,f)=\rho _{l}(a_1, \ldots ,a_l)f\), for all \(a_1, \ldots ,a_l\in \Gamma ({\mathcal {L}})\) and \(f\in C^{\infty }(\mathcal {M})[k]\).

It is straightforward to verify that \(({\bar{\lambda }}_l)_{l\geqslant 1}\) satisfy all the required properties.

The converse can be proved by going backwards. \(\quad \square \)

Given a vector bundle \(\mathcal {E}\xrightarrow {\pi }\mathcal {M}\) of \({\mathbb {Z}}\)-graded manifolds, consider the graded Lie algebra \(\mathscr {D}^{\leqslant 1}(\mathcal {E})\) of first-order differential operators on \(\mathcal {E}\). Namely, \(\mathscr {D}^{\leqslant 1}(\mathcal {E})\) consists of those operators on the algebra \(C^\infty (\mathcal {E})\) that are the sum of a derivation and the multiplication by an element of \(C^\infty (\mathcal {E})\). Indeed, \(\mathscr {D}^{\leqslant 1}(\mathcal {E})\) can be identified to \(\mathscr {X}(\mathcal {E})\oplus C^\infty (\mathcal {E})\) in a canonical way. Since \(C^\infty (\mathcal {E}) \cong \Gamma ({\hat{S}}(\mathcal {E}^\vee ))\), the contraction operator \({\iota }_{s}\) by a section \(s\in \Gamma (\mathcal {E})\) defines a derivation of \(C^\infty (\mathcal {E})\), i.e. a vector field on \(\mathcal {E}\). The inclusion \(\Gamma (\mathcal {E})\oplus C^\infty (\mathcal {M})\hookrightarrow \mathscr {X}(\mathcal {E})\oplus C^\infty (\mathcal {E})\) sending \(s+f\) to \({\iota }_{s}+\pi ^*(f)\) identifies \(\Gamma (\mathcal {E})\oplus C^\infty (\mathcal {M})\) with an abelian Lie subalgebra of \(\mathscr {D}^{\leqslant 1}(\mathcal {E})\). We proceed to define a projection \(P: \mathscr {D}^{\leqslant 1}(\mathcal {E})\twoheadrightarrow \Gamma (\mathcal {E})\oplus C^\infty (\mathcal {M})\). Given a vector field \(X\in \mathscr {X}(\mathcal {E})\), consider the composition

$$\begin{aligned} \Gamma (\mathcal {E}^\vee )\hookrightarrow \Gamma ({\hat{S}}(\mathcal {E}^\vee ))\cong C^\infty (\mathcal {E})\xrightarrow {X}C^\infty (\mathcal {E})\xrightarrow {0^*}C^\infty (\mathcal {M}) , \end{aligned}$$

where \(0^*\) denotes the pullback of functions through the zero section \(0:\mathcal {M}\rightarrow \mathcal {E}\) of the vector bundle. The vector bundle \(\mathcal {E}\) can be canonically identified with the normal bundle of the zero section inside \(\mathcal {E}\). Therefore, there exists a unique \(X^\uparrow \in \Gamma (\mathcal {E})\) such that \(\left\langle \xi ,X^\uparrow \right\rangle = 0^*\big (X(\xi )\big )\), for all \(\xi \in \Gamma (\mathcal {E}^\vee )\). Define \(P: \mathscr {D}^{\leqslant 1}(\mathcal {E})\twoheadrightarrow \Gamma (\mathcal {E})\oplus C^\infty (\mathcal {M})\) by \(P(X+f)=X^\uparrow +0^*(f)\), for all \(X\in \mathscr {X}(\mathcal {E})\) and \(f\in C^\infty (\mathcal {E})\). Note that the projection operator P satisfies

$$\begin{aligned} P\big (\left[ x,y\right] \big ) = P\big (\left[ P(x),y\right] +\left[ x,P(y)\right] \big ), \quad \forall x,y\in \mathscr {D}^{\leqslant 1}(\mathcal {E}). \end{aligned}$$
(35)

The following lemma is easily verified, and is left to the reader.

Lemma A.3

For any \(Q\in \mathscr {X}(\mathcal {E})\), the following assertions are equivalent.

  1. (1)

    The vector field Q is tangent to the zero section of \(\mathcal {E}\xrightarrow {\pi }\mathcal {M}\).

  2. (2)

    There exists a unique vector field \(\Xi \) on \(\mathcal {M}\) such that the diagram

    figure f

    commutes.

  3. (3)

    The ideal \(\ker (0^*)\) of \(C^\infty (\mathcal {E})\) is Q-stable.

  4. (4)

    \(Q\in \ker ( P).\)

Proof of Proposition A.1

Consider the vector bundle \(\mathcal {E}\xrightarrow {\pi }\mathcal {M}\) of \({\mathbb {Z}}\)-graded manifolds, where \(\mathcal {E}={\mathcal {L}}[1]\). Assume that Q is a homological vector field on \({\mathcal {L}}[1]\) tangent to the zero section of \({\mathcal {L}}[1]\xrightarrow {\pi }\mathcal {M}\). According to Lemma A.3, we have \(Q\in \ker (P)\).

The graded Lie algebra \({\mathfrak {A}}=\mathscr {D}^{\leqslant 1}({\mathcal {L}}[1])\), its abelian Lie subalgebra \({\mathfrak {a}}=\Gamma ({\mathcal {L}}[1])\oplus C^\infty (\mathcal {M})\), the projection \(P:{\mathfrak {A}}\rightarrow {\mathfrak {a}}\) of \(\mathscr {D}^{\leqslant 1}({\mathcal {L}}[1])\) onto \(\Gamma ({\mathcal {L}}[1])\oplus C^\infty (\mathcal {M})\), and together with the vector field \(Q\in \ker (P)\) constitute an \(L_\infty [1]\) algebra Voronov data [55, Theorem 1 and Corollary 1]. The multi-brackets \((\mu _l)_{l\geqslant 1}\) are given by a sequence of derived brackets:

$$\begin{aligned} \mu _l(z_1,z_2, \ldots ,z_l) = P \big (\left[ \left[ \left[ \left[ Q,z_1\right] ,z_2\right] ,\cdots \right] ,z_l\right] \big ) ,\end{aligned}$$
(36)

for all \(z_1,z_2,\dots ,z_l\in \Gamma ({\mathcal {L}}[1])\oplus C^\infty (\mathcal {M})\).

Applying the décalage isomorphism, we obtain an \(L_\infty \) algebra on \(\Gamma ({\mathcal {L}})\oplus C^\infty (\mathcal {M})[-1]\) with multi-brackets \(({\bar{\lambda }}_l)_{l\geqslant 1}\). The multi-brackets \((\mu _l)_{l\geqslant 1}\) and \(({\bar{\lambda }}_l)_{l\geqslant 1}\) are related as follows:

$$\begin{aligned} {\bar{\lambda }}_l(w_1,w_2, \ldots ,w_l) =(-1)^{\star } \mu _l(w_1,w_2, \ldots ,w_l) , \end{aligned}$$

where \(\star =(l-1)\left| w_{ 1}\right| +(l-2)\left| w_{2}\right| +\cdots +\left| w_{ {l-1}}\right| \) for all homogeneous \(w_1,w_2,\dots ,w_l\in \Gamma ({\mathcal {L}})\oplus C^\infty (\mathcal {M})[-1]\).

It is straightforward to verify that the \(L_\infty \) algebra structure \(({\bar{\lambda }}_l)_{l\geqslant 1}\) on \(\Gamma ({\mathcal {L}})\oplus C^\infty (\mathcal {M})[-1]\) satisfies the four conditions listed in Lemma A.2. Therefore, \({\mathcal {L}}\rightarrow \mathcal {M}\) is an \(L_\infty \) algebroid. Its multi-anchor maps \(\rho _l: \Lambda ^l {{\mathcal {L}}}\rightarrow T_\mathcal {M}\) (with \(l\geqslant 0\)) and multi-brackets \(\lambda _l: \Lambda ^l\Gamma ({\mathcal {L}})\rightarrow \Gamma ({\mathcal {L}})\) (with \(l\geqslant 1\)) are defined by the relations:

$$\begin{aligned} \rho _l(a_1,a_2, \ldots ,a_l) f= (-1)^{\flat } 0^*\big ( \left[ \left[ \left[ \left[ Q,{\iota }_{a_1}\right] ,{\iota }_{a_2}\right] ,\cdots \right] ,{\iota }_{a_l}\right] (\pi ^* f) \big ), \end{aligned}$$
(37)

where \(\flat =l\left| a_{ 1}\right| +(l-1)\left| a_{2}\right| +\cdots +\left| a_{ {l}}\right| \) and

$$\begin{aligned} \left\langle \lambda _l(a_1,a_2, \ldots ,a_l),\xi \right\rangle = (-1)^{\sharp } 0^*\big ( \left[ \left[ \left[ \left[ Q,{\iota }_{a_1}\right] ,{\iota }_{a_2}\right] ,\cdots \right] ,{\iota }_{a_l}\right] (\xi ) \big ) \end{aligned}$$
(38)

where \(\sharp =(l-1)\left| a_{ 1}\right| +(l-2)\left| a_{2}\right| +\cdots +\left| a_{ {l-1}}\right| \) for all \(\xi \in \Gamma ({\mathcal {L}}^\vee ),a_1,a_2,\dots ,a_l\in \Gamma ({\mathcal {L}})\) and \(f\in C^\infty (\mathcal {M})\).

Conversely, given an \(L_\infty \) algebroid \({\mathcal {L}}\rightarrow \mathcal {M}\) with multi-anchors \((\rho _l)_{l\geqslant 0}\) and multi-brackets \((\lambda _l)_{l\geqslant 1}\), one can recover the corresponding homological vector field Q on \({\mathcal {L}}[1]\) satisfying the desired properties.

The algebra \(C^\infty ({\mathcal {L}}[1])\) admits the direct product decomposition

$$\begin{aligned} C^\infty ({\mathcal {L}}[1]) = \prod _{k=0}^\infty \Gamma (S^k({\mathcal {L}}^\vee [-1])) . \end{aligned}$$

We will refer to \(\Gamma (S^k({\mathcal {L}}^\vee [-1]))\) as the weight k component of \(C^\infty ({\mathcal {L}}[1])\). Note that \(\pi ^* C^\infty (\mathcal {M})\) (the component of weight 0) and \(\Gamma ({\mathcal {L}}^\vee [-1])\) (the component of weight 1) generate the associative algebra \(C^\infty ({\mathcal {L}}[1])\). A vector field Q on \({\mathcal {L}}[1]\) is necessarily of the form \(Q=\sum _{l=-1}^\infty D_l\), where \(D_l\) is a derivation on \(C^\infty ({\mathcal {L}}[1])\) of weight l:

$$\begin{aligned} D_l: \Gamma ({{S}}^{k}({\mathcal {L}}^\vee [-1]))\rightarrow \Gamma ({{S}}^{k+l}({\mathcal {L}}^\vee [-1])), \qquad \forall k . \end{aligned}$$

Since Q is tangent to \(\mathcal {M}\), i.e. we want \(Q\in \ker ( P)\), its weight \((-1)\) component \(D_{-1}\) must vanish. Choose a local coordinate chart \((x^j)_{j\in J}\) on \(\mathcal {M}\); a local frame \((s_k)_{k\in K}\) for \({\mathcal {L}}[1]\); and the dual local frame \((\xi ^k)_{k\in K}\) for \({\mathcal {L}}^\vee [-1]\), the derivation \(D_l\) can be written as

$$\begin{aligned} D_l= & {} \frac{1}{l!}\sum _{j\in J} \xi ^{i_l}\cdots \xi ^{i_{2}}\xi ^{i_1} \pi ^*({\tilde{Q}}^j_{i_1,i_2, \ldots ,i_l}) \frac{\partial }{\partial x^j}\\&+ \frac{1}{(l+1)!}\sum _{k\in K} \xi ^{i_l}\cdots \xi ^{i_1}\xi ^{i_0} \pi ^*(Q^k_{i_0,i_1, \ldots ,i_l}) \frac{\partial }{\partial \xi ^k} , \end{aligned}$$

where

$$\begin{aligned} {\tilde{Q}}^j_{i_1,i_2, \ldots ,i_l} = (-1)^{\diamond } \rho _l(s_{i_1},s_{i_2}, \ldots ,s_{i_l}) x_j \end{aligned}$$

with \(\diamond =(l-1)\left| s_{i_1}\right| +(l-2)\left| s_{i_2}\right| +\cdots +\left| s_{i_{l-1}}\right| \), and

$$\begin{aligned} Q^k_{i_0,i_1, \ldots ,i_l} = (-1)^{\dag } \left\langle \lambda _{l+1}(s_{i_0},s_{i_1}, \ldots ,s_{i_l}),\xi ^k\right\rangle \end{aligned}$$

with \(\dag =(l+1)\left| s_{i_0}\right| +l\left| s_{i_1}\right| +\cdots +\left| s_{i_{l}}\right| \). One checks that \(D_l\), and therefore Q, is well defined. In summary, the multi-anchors and multi-brackets of the \(L_\infty \) algebroid \({\mathcal {L}}\rightarrow \mathcal {M}\) determine through Eqs. (37) and (38) a vector field Q of degree \(+1\) on \({\mathcal {L}}[1]\), which is tangent to the zero section \(\mathcal {M}\).

The \(L_\infty [1]\) algebra structure \((\mu _l)_{l\geqslant 1}\) on \(\Gamma ({\mathcal {L}}[1])\oplus C^\infty (\mathcal {M})\) determined by the \(L_\infty \) algebroid \({\mathcal {L}}\rightarrow \mathcal {M}\) as per Lemma A.2 is related to the vector field Q through Eq. (36). It follows from the generalized Jacobi identity, Eq. (36), and repetitive use of Eq. (35) that

$$\begin{aligned} 0 = \sum _{p+r=l+1}(\mu _p\circ \mu _r)(z_1, \ldots ,z_l) = P \big (\left[ \left[ \left[ \left[ \left[ Q,Q\right] ,z_1\right] ,z_2\right] ,\cdots \right] ,z_l\right] \big ) , \end{aligned}$$

for all \(z_1,z_2,\dots ,z_l\in \Gamma ({\mathcal {L}}[1])\oplus C^\infty (\mathcal {M})\). Therefore \(\left[ Q,Q\right] =0\), i.e. Q is a homological vector field. \(\quad \square \)

Appendix B. Shifted Poisson Algebras

Definition B.1

A degree k Poisson algebra is a \({\mathbb {Z}}\)-graded commutative associative algebra \({\mathfrak {R}}\) with a degree k Poisson bracket, denoted by \([-,-]\) (i.e. \([{\mathfrak {R}}^i,{\mathfrak {R}}^j]\subset {\mathfrak {R}}^{i+j+k}\)), satisfying

  1. (1)

    \([a,b]=-(-1)^{ \left| a\right| ^{[k]} \left| b\right| ^{[k]} }[b,a]\),

  2. (2)

    \([a,[b,c]]=[[a,b],c]+(-1)^{ \left| a\right| ^{[k]} \left| b\right| ^{[k]}}[b,[a,c]]\),

  3. (3)

    \([a,bc]=[a,b]c+(-1)^{ \left| a\right| ^{[k]}\left| b\right| }b[a,c]\),

for all homogeneous elements \(a,b,c\in {\mathfrak {R}}\).

Note that Conditions (1) and (2) are equivalent to that \({\mathfrak {R}}[-k]\) is a \({\mathbb {Z}}\)-graded Lie algebra, while (3) means that the Lie bracket is a biderivation.

Also note that degree 0 Poisson algebras are usual Poisson algebras while degree \((+1)\) Poisson algebras are Gerstenhaber algebras. In the meantime, one can obtain a degree k Poisson algebra from a graded Lie algebra as indicated in the following

Proposition B.2

Let \(\mathfrak {g}\) be a graded Lie algebra. Then the symmetric product \(S(\mathfrak {g}[k])\) (similarly \({\hat{S}} (\mathfrak {g}[k])\)) admits a unique degree k Poisson algebra structure which extends the original Lie bracket on \(\mathfrak {g}\).

Appendix C. Shifted Polyvector Fields

Let \(\mathcal {M}\) be a \({\mathbb {Z}}\)-graded manifold. A degree l vector field \(X\in \mathscr {X}(\mathcal {M})\) is a derivation \(C^{\infty }(\mathcal {M})\xrightarrow {X}C^{\infty }(\mathcal {M})\) of degree l. The degree of X is denoted by \(\left| X\right| =l\).

The commutator in \(\mathscr {X}(\mathcal {M})\) is standard:

$$\begin{aligned}{}[X,Y]=X\circ Y-(-1)^{\left| X\right| \left| Y\right| }Y\circ X , \end{aligned}$$

for all homogeneous \(X,Y\in \mathscr {X}(\mathcal {M})\). It is obvious that \(\mathscr {X}(\mathcal {M})\) is a left \(C^{\infty }(\mathcal {M})\)-module, and the pair \((\mathscr {X}(\mathcal {M}),C^{\infty }(\mathcal {M}))\) forms a \({\mathbb {Z}}\)-graded Lie–Rinehart algebra.

Let \(n\in {\mathbb {Z}}\) be a fixed integer. Following Pridham [39, 40], let \(\mathscr {X}^0_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)=C^{\infty }(\mathcal {M})\), and for each \(m\geqslant 1\),

$$\begin{aligned} \mathscr {X}^{m}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) ={S}^m_{C^{\infty }(\mathcal {M})}\bigl (\Gamma (\mathcal {M}; T_\mathcal {M}[n+1]\bigr ) . \end{aligned}$$

Elements in \(\mathscr {X}^{m}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \) are called n-shifted m-polyvector fields on \(\mathcal {M}\). Then the space

$$\begin{aligned} \mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) =\bigoplus _{m\geqslant 0}\mathscr {X}^{m}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \end{aligned}$$

is called the n-shifted Schouten–Nijenhuis algebra of \(\mathcal {M}\). Its completion is denoted by \({\hat{\mathscr {X}}}^\bullet _{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\). It is simple to see that

$$\begin{aligned} {\hat{\mathscr {X}}}^\bullet _{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\cong C^{\infty }(T^\vee _\mathcal {M}[-n-1]) , \end{aligned}$$

the space of functions on the \((-n-1)\)-shifted cotangent bundle \(T^\vee _\mathcal {M}\).

Since \(T_\mathcal {M}\) is a Lie algebroid, \(T^\vee _\mathcal {M}\) is a canonical Poisson manifold, which is in fact symplectic. According to Proposition 3.8, we have the following

Lemma C.1

The space \(\mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \) admits a degree \((n+1)\) Poisson algebra structure, similarly \({\hat{\mathscr {X}}}^\bullet _{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\).

This degree \((n+1)\) Poisson bracket is also known as the n-shifted Schouten–Nijenhuis bracket. When \(n=0\), the space of 0-shifted polyvector fields \(\mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},0)\), coincides with the usual Schouten–Nijenhuis algebra on \(\mathcal {M}\), which is simply denoted by \(\mathscr {X}^\bullet _{{{\,\mathrm{poly}\,}}}(\mathcal {M})\). When \(n=-1\), the space of \((-1)\)-shifted polyvector fields \(\mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},-1)\) is the Poisson algebra \(\text{ Pol }({T^\vee _\mathcal {M}})\). Its completion \({\hat{\mathscr {X}}}^\bullet _{{{\,\mathrm{poly}\,}}}(\mathcal {M},-1)\cong C^{\infty }(T^\vee _\mathcal {M})\).

Any element in \(\mathscr {X}^{m}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\) is a finite sum of homogeneous elements of the form:

$$\begin{aligned} \Pi ={\bar{X}}_1\odot {\bar{X}}_2\odot \cdots \odot {\bar{X}}_m , \end{aligned}$$

where \(X_i\in \mathscr {X}(\mathcal {M})\), and \({\bar{X}}_i\in \mathscr {X}(\mathcal {M})[n+1]\) denotes the corresponding element with shifted degree. The number \(\left| \Pi \right| =\left| X_1\right| +\cdots +\left| X_m\right| \) is called the pure degree of X, whereas m is called the weight. By

$$\begin{aligned} \parallel \Pi \parallel _{n}=\left| \Pi \right| -m(n+1) , \end{aligned}$$

we denote the total degree of \(\Pi \). The following lemma provides an alternative description of shifted polyvector fields.

Lemma C.2

A homogeneous n-shifted m-polyvector field of pure degree p is equivalent to an m-ary operation

$$\begin{aligned} \Pi : {(C^{\infty }(\mathcal {M}))}^{\otimes m}\rightarrow C^{\infty }(\mathcal {M}) \end{aligned}$$

on \(C^{\infty }(\mathcal {M})\) satisfying the following properties:

  1. 1)

    \(\Pi \) is symmetric multilinear on \(C^{\infty }(\mathcal {M})[-n-1]\):

    $$\begin{aligned}&\Pi (f_1, \ldots ,f_{i-1},f_i,f_{i+1},f_{i+2}, \ldots ,f_m) \\&~~\quad = (-1)^{\left| {f}_i\right| ^{[n+1]}\left| {f}_{i+1}\right| ^{[n+1]}}\Pi (f_1, \ldots ,f_{i-1}, f_{i+1},f_{i},f_{i+1}, \ldots ,f_m) ;\end{aligned}$$
  2. 2)

    \(\Pi \) is a (multi-) derivation of degree p:

    $$\begin{aligned}&\Pi (f_1, \ldots ,f_{m-1},f_mf'_m)\\&~\quad = \Pi (f_1, \ldots ,f_{m-1},f_m)f'_m +(-1)^{(p+\left| f_1\right| +\cdots +\left| f_{m-1}\right| )\left| f_m\right| } f_m\Pi (f_1, \ldots ,f_{m-1},f'_m) . \end{aligned}$$

The proof is omitted as it is completely analogous to the usual unshifted polyvector fields on ordinary smooth manifolds.

Finally, we need a technical lemma for an explicit formula describing the \((n+1)\)-shifted Poisson bracket in \(\mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\). For any \(\Pi \in \mathscr {X}^p_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \) and \(\Lambda \in \mathscr {X}^q_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\), let \(\Pi \circ \Lambda \) be the \((p+q-1)\)-ary operation \(({C^{\infty }({\mathcal {M}})})^{\otimes {p+q-1}}\rightarrow C^{\infty }({\mathcal {M}})\) given by

$$\begin{aligned}&(\Pi \circ \Lambda )(f_1, \ldots ,f_{p+q-1}) \\&\quad = \sum _{\sigma \in \mathrm {Sh}(p,q-1)}{\epsilon ^{[n+1]}}(\sigma ) \Pi (\Lambda (f_{\sigma (1)}, \ldots ,f_{\sigma (q)}),f_{\sigma (q+1)}, \ldots ,f_{\sigma (p+q-1)}). \end{aligned}$$

Here \({\epsilon }^{[n+1]}(\sigma )\) denotes the Koszul sign with respect to the shifted degrees \(\left| {f}_1\right| ^{[n+1]}\), \(\cdots \), \(\left| {f}_{p+q}\right| ^{[n+1]}\).

Lemma C.3

For any \(\Pi \in \mathscr {X}^{p}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \) and \(\Lambda \in \mathscr {X}^{q}_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n) \), the degree \((n+1)\) Poisson bracket \([\Pi ,\Lambda ]\) in \(\mathscr {X}^{\bullet }_{{{\,\mathrm{poly}\,}}}(\mathcal {M},n)\) as in Lemma C.1 coincides with the graded commutator:

$$\begin{aligned}{}[\Pi ,\Lambda ]=\Pi \circ \Lambda -(-1)^{(\parallel \Pi \parallel _{n}+n+1)(\parallel \Lambda \parallel _{n}+n+1)}\Lambda \circ \Pi . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandiera, R., Chen, Z., Stiénon, M. et al. Shifted Derived Poisson Manifolds Associated with Lie Pairs. Commun. Math. Phys. 375, 1717–1760 (2020). https://doi.org/10.1007/s00220-019-03457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03457-w

Navigation