Skip to main content
Log in

On the Cobordism Classification of Symmetry Protected Topological Phases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of Atiyah’s axioms of topological quantum field theory with unitarity, we give a direct proof of the fact that symmetry protected topological phases without Hall effects are classified by cobordism invariants. We first show that the partition functions of those theories are cobordism invariants after a tuning of the Euler term. Conversely, for a given cobordism invariant, we construct a unitary topological field theory whose partition function is given by the cobordism invariant, assuming that a certain bordism group is finitely generated. Two theories having the same cobordism invariant partition functions are isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kapustin, A.: Symmetry protected topological phases, anomalies, and cobordisms: beyond group cohomology. arXiv:1403.1467

  2. Kapustin, A., Thorngren, R., Turzillo, A., Wang, Z.: Fermionic symmetry protected topological phases and cobordisms. JHEP 12, 052 (2015). arXiv:1406.7329

    ADS  MathSciNet  MATH  Google Scholar 

  3. Freed, D.S., Hopkins, M.J.: Reflection positivity and invertible topological phases. arXiv:1604.06527

  4. Hasan, M.Z., Kane, C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010). arXiv:1002.3895

    Article  ADS  Google Scholar 

  5. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057–1110 (2011)

    Article  ADS  Google Scholar 

  6. Freed, D.S., Moore, G.W.: Setting the quantum integrand of M-theory. Commun. Math. Phys. 263, 89–132 (2006). hep-th/0409135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ryu, S., Moore, J.E., Ludwig, A.W.W.: Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors. Phys. Rev. B 85, 045104 (2012). arXiv:1010.0936

    Article  ADS  Google Scholar 

  8. Wen, X.-G.: Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders. Phys. Rev. D88(4), 045013 (2013). arXiv:1303.1803

    ADS  Google Scholar 

  9. Kapustin, A., Thorngren, R.: Anomalies of discrete symmetries in various dimensions and group cohomology. arXiv:1404.3230

  10. Freed, D.S.: Anomalies and invertible field theories. Proc. Symp. Pure Math. 88, 25–46 (2014). arXiv:1404.7224

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J.C., Gu, Z.-C., Wen, X.-G.: Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond. Phys. Rev. Lett. 114(3), 031601 (2015). arXiv:1405.7689

    Article  ADS  Google Scholar 

  12. Hsieh, C.-T., Cho, G.Y., Ryu, S.: Global anomalies on the surface of fermionic symmetry-protected topological phases in (3+1) dimensions. Phys. Rev. B93(7), 075135 (2016). arXiv:1503.01411

    Article  ADS  Google Scholar 

  13. Witten, E.: Fermion path integrals and topological phases. Rev. Mod. Phys. 88(3), 035001 (2016). arXiv:1508.04715

    Article  ADS  Google Scholar 

  14. Witten, E.: The “parity” anomaly on an unorientable manifold. Phys. Rev. B94(19), 195150 (2016). arXiv:1605.02391

    Article  ADS  Google Scholar 

  15. Guo, M., Putrov, P., Wang, J.: Time reversal, SU(N) Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in 3+1D. arXiv:1711.11587

  16. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and riemannian geometry 1. Math. Proc. Camb. Philos. Soc. 77, 43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, X-z, Freed, D.S.: eta invariants and determinant lines. J. Math. Phys. 35, 5155–5194 (1994), [hep-th/9405012]. [Erratum: J. Math. Phys.42,2343(2001)]

  18. Yonekura, K.: Dai-freed theorem and topological phases of matter. JHEP 09, 022 (2016). arXiv:1607.01873

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fukaya, H., Onogi, T., Yamaguchi, S.: Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator. Phys. Rev. D96(12), 125004 (2017). arXiv:1710.03379

    ADS  MathSciNet  Google Scholar 

  20. Chen, X., Gu, Z.-C., Liu, Z.-X., Wen, X.-G.: Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B87(15), 155114 (2013). arXiv:1106.4772

    Article  ADS  Google Scholar 

  21. Gu, Z.-C., Wen, X.-G.: Symmetry-protected topological orders for interacting fermions: fermionic topological nonlinear ? models and a special group supercohomology theory. Phys. Rev. B90(11), 115141 (2014). arXiv:1201.2648

    Article  ADS  Google Scholar 

  22. Wang, Q.-R., Gu, Z.-C.: Towards a complete classification of fermionic symmetry protected topological phases in 3D and a general group supercohomology theory. Phys. Rev. X8(1), 011055 (2018). arXiv:1703.10937

    Article  Google Scholar 

  23. Kitaev, A.: On the classification of short-range entangled states. Talk at Simons Center. http://scgp.stonybrook.edu/archives/16180

  24. Gaiotto, D., Johnson-Freyd, T.: Symmetry protected topological phases and generalized cohomology. arXiv:1712.07950

  25. Xiong, Z.: Minimalist approach to the classification of symmetry protected topological phases. arXiv:1701.00004

  26. Freed, D.S.: Short-range entanglement and invertible field theories. arXiv:1406.7278

  27. Freed, D.S., Komargodski, Z., Seiberg, N.: The sum over topological sectors and \(\theta \) in the 2+1-dimensional \(\mathbb{CP}^{1}\,\sigma \)-Model. arXiv:1707.05448

  28. Baez, J .C., Dolan, J.: Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995). [q-alg/9503002]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lurie, J.: On the classification of topological field theories. arXiv:0905.0465

  30. Schommer-Pries, C.: Invertible topological field theories. arXiv:1712.08029

  31. Fidkowski, L., Chen, X., Vishwanath, A.: Non-abelian topological order on the surface of a 3D topological superconductor from an exactly solved model. Phys. Rev. X3(4), 041016 (2013). arXiv:1305.5851

    Article  Google Scholar 

  32. Wang, C., Senthil, T.: Interacting fermionic topological insulators/superconductors in three dimensions. Phys. Rev. B89(19), 195124 (2014). arXiv:1401.1142. [Erratum: Phys. Rev.B91,no.23,239902(2015)]

  33. Metlitski, M.A., Fidkowski, L., Chen, X., Vishwanath, A.: Interaction effects on 3D topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets. arXiv:1406.3032

  34. Morimoto, T., Furusaki, A., Mudry, C.: Breakdown of the topological classification \(\mathbb{Z}\) for gapped phases of noninteracting fermions by quartic interactions. Phys. Rev. B92(12), 125104 (2015). arXiv:1505.06341

    Article  ADS  Google Scholar 

  35. Tachikawa, Y., Yonekura, K.: Gauge interactions and topological phases of matter. PTEP 2016(9), 093B07 (2016). arXiv:1604.06184

    MATH  Google Scholar 

  36. Witten, E.: Three lectures on topological phases of matter. Riv. Nuovo Cim. 39(7), 313–370 (2016). arXiv:1510.07698

    ADS  Google Scholar 

  37. Gaiotto, D., Kapustin, A., Seiberg, N., Willett, B.: Generalized global symmetries. JHEP 02, 172 (2015). arXiv:1412.5148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Thorngren, R.: Topological terms and phases of sigma models. arXiv:1710.02545

  39. Kapustin, A., Thorngren, R.: Higher symmetry and gapped phases of gauge theories. arXiv:1309.4721

  40. Tachikawa, Y.: On gauging finite subgroups. arXiv:1712.09542

  41. Córdova, C., Dumitrescu, T.T., Intriligator, K.: Exploring 2-group global symmetries. arXiv:1802.04790

  42. Benini, F., Córdova, C., Hsin, P.-S.: On 2-group global symmetries and their anomalies. arXiv:1803.09336

  43. Seiberg, N., Tachikawa, Y., Yonekura, K.: Anomalies of duality groups and extended conformal manifolds. arXiv:1803.07366

  44. Freed, D.S.: The cobordism hypothesis. arXiv:1210.5100

  45. Atiyah, M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175–186 (1989)

    Article  MATH  Google Scholar 

  46. Baez, J.C.: Some definitions everyone should know. http://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf

  47. Milnor, J.: Lectures on the h-cobordism theorem. Princeton University Press, Princeton (1965)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Y. Tachikawa and E. Witten for helpful comments, and K. Hori, C.-T. Hsieh, and Y. Tachikawa for discussions on related topics. The work of KY is supported in part by the WPI Research Center Initiative (MEXT, Japan), and also supported by JSPS KAKENHI Grant-in-Aid (Wakate-B), No.17K14265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Yonekura.

Additional information

Communicated by X. Yin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Some Categorical Notions

A Some Categorical Notions

For completeness, here we reproduce the definitions of symmetric monoidal categories, functors and natural transformations summarized in [46]. We denote categories by \({\mathscr {C}},{\mathscr {D}},\ldots \), functories by \(F,G,\ldots \), and natural transformations by \(\eta ,\ldots \). The definitions of ordinary categories, functors and natural transformations are explained very briefly in Sect. 2.4.

Symmetric monoidal category. First we define symmetric monoidal category.

Definition A.1

A monoidal category is a category equipped with

  • a functor \(\otimes : {\mathscr {C}}\times {\mathscr {C}}\rightarrow {\mathscr {C}}\) called the tensor product,

  • an object \(1 \in \mathrm{obj}({\mathscr {C}})\) called the unit object,

  • a natural isomorphism \(a_{x,y,z}\) (\(x,y,z \in \mathrm{obj}({\mathscr {C}})\)) called the associator

    $$\begin{aligned} a_{x,y,z}: (x \otimes y) \otimes z \rightarrow x \otimes (y \otimes z) \end{aligned}$$
    (A.1)

    satisfying the pentagon equation

    (A.2)
  • natural isomorphisms \(\ell _x\) and \(r_x\) called the left and right unit laws,

    $$\begin{aligned} \ell _x : 1 \otimes x \rightarrow x, \qquad r_x: x \otimes 1 \rightarrow x \end{aligned}$$
    (A.3)

    satisfying the triangle equations

    (A.4)

Roughly speaking, the pentagon equation means that “multiplications can be done in any order”, or “any ways to go from \((( w \otimes x) \otimes y) \otimes z\) to \(w \otimes ( x \otimes ( y \otimes z )) \) are the same”. The triangle equation means that “any ways to eliminate the unit 1 are the same”.

Definition A.2

A braided monoidal category is a monoidal category with a natural isomorphism \(b_{x,y}\) called the braiding,

$$\begin{aligned} b_{x,y}: x \otimes y \rightarrow y \otimes x \end{aligned}$$
(A.5)

satisfying the hexagon equations

(A.6)
(A.7)

Roughly speaking, the first hexagon equation above means that “moving x all at once from the left to the right of \(y \otimes z\) is the same as moving x step by step by first going through y and then z.” The second hexagon equation means a similar thing for z.

Definition A.3

A symmetric monoidal category is a braided monoidal category such that the braiding satisfies \(b_{y,x} b_{x,y} = 1_{x \otimes y}\).

Symmetric monoidal functor. Let us next consider functors between monoidal categories. In the following, if an expression like e.g. \(a^{\mathscr {D}}_{x,y,z}\) appears with a superscript or subscript \({\mathscr {D}}\), that means (in this particular case) “the associator in the category \({\mathscr {D}}\)”. The same remark applies to subscripts/superscripts of other quantities.

Definition A.4

A monoidal functor F between monoidal categories \({\mathscr {C}}\) and \({\mathscr {D}}\) is a functor with

  • a natural transformation

    $$\begin{aligned} \mu _{x,y}: F(x) \otimes F(y) \rightarrow F(x \otimes y) \end{aligned}$$
    (A.8)

    satisfying the associativity

    (A.9)
  • an isomorphism

    $$\begin{aligned} \epsilon : 1_{{\mathscr {D}}} \rightarrow F(1_{\mathscr {C}}) \end{aligned}$$
    (A.10)

    satisfying

    (A.11)

    and

    (A.12)

Roughly speaking, these equations mean that “the associator \(a_{x,y,z}\) and the left, right unit laws \(\ell _x\), \(r_x\) can be used before or after the application of the functor, giving the same result”.

Definition A.5

A braided monoidal functor between braided monoidal categories is a monoidal functor with the additional condition that

(A.13)

Again, this roughly means that “the braiding can be used before or after the functor”.

Definition A.6

A symmetric monoidal functor between symmetric monoidal categories is a braided monoidal functor without extra conditions.

Symmetric monoidal natural transformation.Finally, we describe natural transformations.

Definition A.7

A monoidal natural transformation \(\eta \) between monoidal functors F and G is a natural transformation such that the following diagram commutes:

(A.14)
(A.15)

Definition A.8

A braided (reps. symmetric) monoidal natural transformation between braided (reps. symmetric) monoidal functors is a monoidal natural transformation, without extra conditions.

Involution. For completeness, we also describe the notion of involution following [3].

Definition A.9

An involution on a category \({\mathscr {C}}\) is a pair \((\beta , \xi )\) of a functor \(\beta : {\mathscr {C}}\rightarrow {\mathscr {C}}\) and a natural isomorphism \(\xi : \mathrm{id}_{\mathscr {C}}\rightarrow \beta ^2\) such that \(\beta ( \xi _x) = \xi _{\beta (x)}\) as morphisms \(\beta (x) \rightarrow \beta ^3(x)\).

Roughly speaking, the involution functor \(\beta \) “squares to the identity functor”.

Definition A.10

Let \(\beta _{\mathscr {C}}\) and \(\beta _{\mathscr {D}}\) be involutions of categories \({\mathscr {C}}\) and \({\mathscr {D}}\). A functor \(F : {\mathscr {C}}\rightarrow {\mathscr {D}}\) is equivariant under the involution pair \((\beta _{\mathscr {C}}, \beta _{\mathscr {D}})\) if there is a natural isomorphism \(\phi : F \beta _{\mathscr {C}}\Rightarrow \beta _{\mathscr {D}}F\) such that the following diagram commutes:

(A.16)

Roughly speaking, this means that “the involution \(\beta \) and the functor F commutes with each other in the way consistent with the fact that the involution squires to the identity”.

The corresponding notions in symmetric monoidal categories can also be defined by using symmetric monoidal functors and symmetric monoidal natural isomorphisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonekura, K. On the Cobordism Classification of Symmetry Protected Topological Phases. Commun. Math. Phys. 368, 1121–1173 (2019). https://doi.org/10.1007/s00220-019-03439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03439-y

Navigation