Skip to main content
Log in

Scale and Möbius Covariance in Two-Dimensional Haag–Kastler Net

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a two-dimensional Haag–Kastler net which is Poincaré-dilation covariant with additional properties, we prove that it can be extended to a Möbius covariant net. Additional properties are either a certain condition on modular covariance, or a variant of strong additivity. The proof relies neither on the existence of stress-energy tensor nor any assumption on scaling dimensions. We exhibit some examples of Poincaré-dilation covariant net which cannot be extended to a Möbius covariant net, and discuss the obstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4, 1343–1362 (1963). https://doi.org/10.1063/1.1703912

    Article  ADS  MathSciNet  Google Scholar 

  2. Araki H., Zsidó L.: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. Rev. Math. Phys. 17(5), 491–543 (2005) arXiv:math/0412061

    Article  MathSciNet  Google Scholar 

  3. Buchholz D., D’Antoni C., Longo R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007) arXiv:math-ph/0603083

    Article  ADS  MathSciNet  Google Scholar 

  4. Bostelmann H., D’Antoni C., Morsella G.: On dilation symmetries arising from scaling limits. Commun. Math. Phys. 294(1), 21–60 (2010) arXiv:0812.4762

    Article  ADS  MathSciNet  Google Scholar 

  5. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993). http://projecteuclid.org/euclid.cmp/1104253522

    Article  ADS  MathSciNet  Google Scholar 

  6. Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14(7-8), 759–785 (2002) arXiv:math-ph/0203021

    Article  MathSciNet  Google Scholar 

  7. Borchers, H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143(2), 315–332 (1992). http://projecteuclid.org/euclid.cmp/1104248958

    Article  ADS  MathSciNet  Google Scholar 

  8. Buchholz, D., Schulz-Mirbach, H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2(1), 105–125 (1990). https://www.researchgate.net/publication/246352668

    Article  ADS  MathSciNet  Google Scholar 

  9. Bischoff Marcel, Tanimoto Yoh: Integrable QFT and Longo–Witten endomorphisms. Ann. Henri Poincaré 16(2), 569–608 (2015) arXiv:1305.2171

    Article  ADS  MathSciNet  Google Scholar 

  10. Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II. Commun. Math. Phys. 315(3), 771–802 (2012) arXiv:1109.2064

    Article  ADS  MathSciNet  Google Scholar 

  11. Dixmier, J.: von Neumann Algebras, vol. 27 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1981). https://books.google.com/books?id=8xSoAAAAIAAJ

  12. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108

    Article  ADS  MathSciNet  Google Scholar 

  13. Dütsch M., Rehren K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincaré 4(4), 613–635 (2003) arXiv:math-ph/0209035

    Article  ADS  MathSciNet  Google Scholar 

  14. Dorigoni, D., Rychkov, V.S.: Scale invariance + unitarity \({=>}\) conformal invariance? (2009). arXiv:0910.1087

  15. El-Showk S., Nakayama Y., Rychkov S.: What Maxwell theory in \({d\neq 4}\) teaches us about scale and conformal invariance. Nucl. Phys. B 848(3), 578–593 (2011) arXiv:1101.5385

    Article  ADS  Google Scholar 

  16. Figliolini, F., Guido, D.: On the type of second quantization factors. J. Oper. Theory 31(2), 229–252 (1994). https://www.researchgate.net/publication/265588862_On_the_type_of_second_quantization_factors

  17. Fredenhagen, K., Jörß, M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). https://projecteuclid.org/euclid.cmp/1104286114

    Article  ADS  MathSciNet  Google Scholar 

  18. Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46(4), 289–293 (1998). https://doi.org/10.1023/A:1007546507392

    Article  MathSciNet  Google Scholar 

  19. Furlan P., otkov G.M., Todorov I.T.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cimento (3) 12(6), 1–202 (1989). https://doi.org/10.1007/BF02742979

    Article  MathSciNet  Google Scholar 

  20. Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993). http://projecteuclid.org/euclid.cmp/1104253398

    Article  ADS  MathSciNet  Google Scholar 

  21. Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996). http://projecteuclid.org/euclid.cmp/1104287623

    Article  ADS  MathSciNet  Google Scholar 

  22. Guido D., Longo R., Wiesbrock H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192(1), 217–244 (1998) arXiv:hep-th/9703129

    Article  ADS  MathSciNet  Google Scholar 

  23. Halperin, I.: The product of projection operators. Acta Sci. Math. (Szeged) 23, 96–99 (1962) http://pub.acta.hu/acta/showCustomerVolume.action?id=7188&dataObjectType=volume&noDataSet=true&style=

  24. Kawahigashi Y., Longo R.: Classification of two-dimensional local conformal nets with \({c < 1}\) and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244(1), 63–97 (2004) arXiv:math-ph/0304022

    Article  ADS  MathSciNet  Google Scholar 

  25. Koester, S.: Absence of stress energy tensor in CFT 2 models (2003). arXiv:math-ph/0303053

  26. Köster S.: Conformal transformations as observables. Lett. Math. Phys. 61(3), 187–198 (2002) arXiv:math-ph/0201016

    Article  MathSciNet  Google Scholar 

  27. Landau, L.J.: On local functions of fields. Commun. Math. Phys. 39, 49–62 (1974). http://projecteuclid.org/euclid.cmp/1103860121

    Article  ADS  MathSciNet  Google Scholar 

  28. Longo R., Morinelli V., Rehren K.-H.: Where infinite spin particles are localizable. Commun. Math. Phys. 345(2), 587–614 (2016) arXiv:1505.01759

    Article  ADS  MathSciNet  Google Scholar 

  29. Longo, R.: A simple proof of the existence of modular automorphisms in approximately finite-dimensional von Neumann algebras. Pacific J. Math. 75(1), 199–205 (1978). http://projecteuclid.org/euclid.pjm/1102810157

    Article  MathSciNet  Google Scholar 

  30. Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT. In: Von Neumann Algebras in Sibiu: Conference Proceedings, pp. 33–91. Theta, Bucharest (2008). https://www.mat.uniroma2.it/longo/Lecture-Notes_files/LN-Part1.pdf

  31. Leyland, P., Roberts, J., Testard, D.: Duality for quantum free fields. unpublished manuscript, Marseille (1978)

  32. Mack, G.: All unitary ray representations of the conformal group SU(2, 2) with positive energy. Commun. Math. Phys. 55(1), 1–28 (1977). https://projecteuclid.org/euclid.cmp/1103900926

    Article  ADS  MathSciNet  Google Scholar 

  33. Morinelli V.: The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions. Ann. Henri Poincaré 19(3), 937–958 (2018) arXiv:1703.06831

    Article  MathSciNet  Google Scholar 

  34. Morinelli V., Tanimoto Y., Weiner M.: Conformal covariance and the split property. Commun. Math. Phys. 357(1), 379–406 (2018) arXiv:1609.02196

    Article  ADS  MathSciNet  Google Scholar 

  35. Nakayama Y.: Scale invariance vs conformal invariance. Phys. Rep. 569, 1–93 (2015) arXiv:1302.0884

    Article  ADS  MathSciNet  Google Scholar 

  36. Nakayama, Y.: On the realization of impossible anomalies (2018). arXiv:1804.02940

  37. Osterwalder, K.: Duality for free Bose fields. Commun. Math. Phys. 29, 1–14 (1973). http://projecteuclid.org/euclid.cmp/1103858474

    Article  ADS  MathSciNet  Google Scholar 

  38. Polchinski J.: Scale and conformal invariance in quantum field theory. Nucl. Phys. B. 303(2), 226–236 (1988). https://doi.org/10.1016/0550-3213(88)90179-4

    Article  ADS  MathSciNet  Google Scholar 

  39. Pontryagin, L.S.: Topological Groups. Translated from the Russian by Emma Lehmer. Princeton University Press (1946). https://books.google.it/books?id=eS0PAAAAIAAJ&hl=it&source=gbs_book_other_versions

  40. Rehren K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208(3), 689–712 (2000) arXiv:hep-th/9903262

    Article  ADS  MathSciNet  Google Scholar 

  41. Sadowski P., Woronowicz S.L.: Total sets in quantum field theory. Rep. Math. Phys. 2(2), 113–120 (1971). https://doi.org/10.1016/0034-4877(71)90024-3

    Article  ADS  MathSciNet  Google Scholar 

  42. Takesaki, M.: Theory of Operator Algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003). Operator Algebras and Non-commutative Geometry, 6. https://books.google.com/books?id=-4GyR1VlQz4C

  43. Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012) arXiv:1107.2629

    Article  ADS  MathSciNet  Google Scholar 

  44. Tanimoto, Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. Forum Math. Sigma 2:e7, 31 (2014). arXiv:1301.6090

  45. Weiner, M.: Conformal covariance and related properties of chiral QFT. 2005. Ph.D. thesis, Università di Roma “Tor Vergata”. arXiv:math/0703336

  46. Wiesbrock, H.-W.: Half-sided modular inclusions of von-Neumann-algebras. Commun. Math. Phys. 157(1), 83–92 (1993). https://projecteuclid.org/euclid.cmp/1104253848

    Article  ADS  MathSciNet  Google Scholar 

  47. Wiesbrock, H.-W.: Modular intersections of von Neumann algebras in quantum field theory. Commun. Math. Phys. 193(2), 269–285 (1998). https://www-sfb288.math.tu-berlin.de/pub/Preprints/preprint193.ps.gz

    Article  ADS  MathSciNet  Google Scholar 

  48. Zomolodchikov, A.B.: “Irreversibility” of the flux of the renormalization group in a 2D field theory. Pis’ma Zh. Èksper. Teoret. Fiz. 43(12), 565–567 (1986). http://www.jetpletters.ac.ru/ps/1413/article_21504.shtml

Download references

Acknowledgements

We thank Yu Nakayama for interesting discussions and bibliographical information. The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoh Tanimoto.

Additional information

Communicated by Y. Kawahigashi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. Morinelli: Supported in part by the ERC Advanced Grant 669240 QUEST “Quantum Algebraic Structures and Models”, MIUR FARE R16X5RB55W QUEST-NET, GNAMPA-INdAM.

Y. Tanimoto: Supported by Programma per giovani ricercatori, anno 2014 “Rita Levi Montalcini” of the Italian Ministry of Education, University and Research.

© 2019 by the authors. This paper may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morinelli, V., Tanimoto, Y. Scale and Möbius Covariance in Two-Dimensional Haag–Kastler Net. Commun. Math. Phys. 371, 619–650 (2019). https://doi.org/10.1007/s00220-019-03410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03410-x

Navigation