Skip to main content
Log in

On Relative Metric Mean Dimension with Potential and Variational Principles

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this article, we introduce a notion of relative mean metric dimension with potential for a factor map \(\pi : (X,d, T)\rightarrow (Y, S)\) between two topological dynamical systems. To link it with ergodic theory, we establish four variational principles in terms of metric entropy of partitions, Shapira’s entropy, Katok’s entropy and Brin–Katok local entropy respectively. Some results on local entropy with respect to a fixed open cover are obtained in the relative case. We also answer an open question raised by Shi (On variational principles for metric mean dimension, 2021. arXiv:2101.02610) partially for a very well-partitionable compact metric space, and in general we obtain a variational inequality involving box dimension of the space. Corresponding inner variational principles given an invariant measure of (YS) are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Blanchard, F., Glasner, E., Host, B.: A variation on the variational principle and applications to entropy pairs. Ergodic Theory Dyn. Syst. 17(1), 29–43 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics. Lecture Notes in Mathematics, vol. 1007. Springer, Berlin, pp. 30–38 (1983)

  3. Downarowicz, T.: Entropy in Dynamical Systems. New Mathematical Monographs, vol. 18, pp. xii+391. Cambridge University Press (2011)

  4. Downarowicz, T., Serafin, J.: Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fund. Math. 172, 217–247 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glasner, E., Weiss, B.: On the Interplay Between Measurable and Topological Dynamics. In: Hasselblatt and Katok (eds) Handbook of Dynamical Systems, vol. 1B, pp. 597–648. North-Holland, Amsterdam

  6. Goodman, T.N.T.: Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 3(2), 176–180 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodwyn, L.W.: Topological entropy bounds measure-theoretic entropy. In: Proceedings of the American Mathematical Society, pp. 679-688 (1969)

  8. Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutman, Y., Śpiewak, A.: Around the variational principle for metric mean dimension. Studia Math. 261(3), 345–360 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, W., Ye, X.: A local variational relation and applications. Israel J. Math. 151(1), 237–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, W., Ye, X., Zhang, G.: A local variational principle for conditional entropy. Ergodic Theory Dyn. Syst. 26(01), 219–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, W., Yi, Y.: A local variational principle of pressure and its applications to equilibrium states. Israel J. Math. 161(1), 29–74 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanigowski, A., Kunde, P., Vinhage K., Wei, D.: Slow entropy of higher rank abelian unipotent actions. arXiv:2005.02212 (2020)

  14. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. 16(2), 568–576 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inform. Theory 64(5), 3590–3609 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, X., Chen, E.: Variational principles for relative local pressure with subadditive potentials. J. Math. Phys. 54(3), 2701, 25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pesin, Y.B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. University of Chicago Press (2008)

  20. Rohlin, V.A.: On the fundamental ideas of measure theory. Am. Math. Soc. 71, 55 (1952)

    MathSciNet  Google Scholar 

  21. Romagnoli, P.: A local variational principle for the topological entropy. Ergodic Theory Dyn. Syst. 23(05), 1601–1610 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shapira, U.: Measure theoretical entropy of covers. Israel J. Math. 158(1), 225–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shi, R.: On variational principles for metric mean dimension. arXiv:2101.02610 (2021)

  24. Tang, D., Wu, H., Li, Z.: Weighted upper metric mean dimension for amenable group actions. Dyn. Syst. 35(3), 382–397 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsukamoto, M.: Double variational principle for mean dimension with potential. Adv. Math. 361, 106935 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Velozo, A., Velozo, R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762 (2017)

  27. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)

    Book  MATH  Google Scholar 

  28. Zhou, X.: A formula of conditional entropy and some applications. Discrete Contin. Dyn. Syst. Ser. A 36(7), 4063–4075 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for valuable suggestions, and Daren Wei, Ruxi Shi and Tao Wang for helpful discussions. This work is supported by NSFC (Nos. 12071474, 11701559), and Fundamental Research Funds for the Central Universities (No. 20720210038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Proposition 3.5

Appendix: Proof of Proposition 3.5

We prepare two lemmas before going to the proof of Proposition 3.5.

Lemma 6.1

Let \(\pi : (X, T)\rightarrow (Y,S)\) be a factor map, \(\mu \in {\mathcal {M}}_T(X)\) and \(\mu =\int \mu _yd\nu (y)\) the disintegration of \(\mu \) over \(\nu =\pi \mu \). Then for any \({\mathcal {V}}\in {\mathcal {C}}_X\) and \(0<\rho <1\), there exists \(\beta \in {\mathcal {P}}_X\) such that \(\beta \succeq {\mathcal {V}}\) and \(N_{\mu _y}(\beta , \rho )\le N_{\mu _y}({\mathcal {V}}, \rho )\) for \(\nu \text {-a.e.}\ y\in Y\).

Proof

Let \({\mathcal {V}}=\{V_1, \cdots , V_m\}\). For \(\nu \text {-a.e.}\ y\in Y\), there exists \(I_y \subset \{1,\cdots , m\}\) with cardinality \(N_{\mu _y}({\mathcal {V}}, \rho )\) such that \(\bigcup _{i\in I_y}V_i\) covers a subset of \(\pi ^{-1}y\) up to a set of \(\mu _y\)-measure less than \(\rho \). Hence we can find \(y_1, \cdots , y_s \in Y\) such that for \(\nu \text {-a.e.}\ y\in Y\), \(I_y =I_{y_i}\) for some \(i\in \{1,\cdots ,s\}\). For \(i = 1,\cdots s\), define

$$\begin{aligned} D_i=\{y\in Y: \mu _y(\bigcup _{j\in I_{y_i}}V_j)>1-\rho \}. \end{aligned}$$

Let \(C_1=D_1\), \(C_i = D_i\setminus \cup _{j=1}^{i-1}D_j, i= 2,\cdots , s\).

Fix \(i\in \{1,\cdots , s\}\). Assume \(I_{y_i}=\{k_1< \cdots < k_{t_i}\}\) where \(t_i=N_{\mu _{y_i}}({\mathcal {V}}, \rho )\). Take \(\{W_1(y_i),\cdots ,W_{t_i}(y_i)\}\) where

$$\begin{aligned} W_1(y_i) =V_{k_1}, W_2(y_i) =V_{k_2}\setminus V_{k_1},\cdots , W_{t_i}(y_i)=V_{k_{t_i}}\setminus \cup _{j=1}^{t_i-1}V_{k_j}. \end{aligned}$$

Define \(A:=X\setminus \left( \cup _{i=1}^s(\pi ^{-1}C_i\cap \cup _{j=1}^{t_i}W_j(y_j)\right) \) and \(A_1=A\cap V_1, A_l:=A\cap (V_l\setminus \cup _{j=1}^{l-1}V_j), l=2, \cdots , m\). Finally, define

$$\begin{aligned} \begin{aligned}\beta =\{&\pi ^{-1}C_1\cap W_1(y_1), \cdots , \pi ^{-1}C_1\cap W_{t_1}(y_1), \cdots , \\&\pi ^{-1}C_s\cap W_1(y_s), \cdots , \pi ^{-1}C_s\cap W_{t_s}(y_s), A_1, \cdots , A_m\}. \end{aligned} \end{aligned}$$

Then \(\beta \succeq {\mathcal {V}}\) and \(N_{\mu _y}(\beta , \rho )\le N_{\mu _y}({\mathcal {V}}, \rho )\) for \(\nu \text {-a.e.}\ y\in Y\). \(\square \)

Lemma 6.2

(Strong Rohlin Lemma, see Lemma 2.5 in [22]) Let \((X, {\mathcal {B}}, \mu , T)\) be an ergodic, aperiodic invertible system and let \(\alpha \in {\mathcal {P}}_X\). Then for any \(\delta >0\) and \(n\in {\mathbb {N}}\), one can find a set \(B\in {{\mathcal {B}}}\) such that \(B, TB, \cdots , T^{n-1}B\) are mutually disjoint, \(\mu (\cup _{i=0}^{n-1}T^iB)>1-\delta \) and the distribution of \(\alpha \) is the same as the distribution of the partition \(\alpha |_B\) that \(\alpha \) induces on B.

Proof of Proposition 3.5

The proposition follows from the following two lemmas. \(\square \)

Lemma 6.3

Let \(\mu \in {\mathcal {E}}_T(X)\) and \({\mathcal {U}}\in {\mathcal {C}}_X^o\). Then for any \(0<\rho <1\),

$$\begin{aligned} {\overline{h}}^{S}_{\mu }(T,{\mathcal {U}},\rho |Y)\le h_\mu (T,{\mathcal {U}}|Y). \end{aligned}$$

Proof

Take any finite Borel partition \(\alpha \succeq {\mathcal {U}}\). According to Theorem 3.1, as \(\mu \) is ergodic, there exist \(Y_1\in {\mathcal {B}}_Y\) with \(\nu (Y_1)=1\) such that for each \(y\in Y_1\) and \(\mu _y\text {-a.e.}\ x,\)

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{-\log \mu _y(\alpha _0^{n-1}(x))}{n}= h_\mu (T,\alpha |Y). \end{aligned}$$

Fix \(y\in Y_1\). For \(n\in {\mathbb {N}}\) and \(\delta >0, \) set

$$\begin{aligned} I_n:=\{x\in \pi ^{-1}y:\mu _y(\alpha _0^{n-1}(x))>\exp (-(h_\mu (T,\alpha |Y)+\delta )n)\} =\pi ^{-1}y\cap \bigcup _{V\in {\mathcal {J}}_n}V, \end{aligned}$$

where \({\mathcal {J}}_n=\{V\in \alpha _0^{n-1}:\mu _y(V)>\exp (-(h_\mu (T,\alpha |Y)+\delta )n)\). Then for any \(\delta >0\), \(\lim _{n\rightarrow \infty }\mu _y(I_n)=1.\) Thus, for sufficiently large \(n\in {\mathbb {N}}\), we have \(\mu _y(I_n)>1-\rho .\) Since

$$\begin{aligned} \begin{aligned} \#{\mathcal {J}}_n&=\#\{V\in \alpha _0^{n-1}:\mu _y(V)>\exp (-(h_\mu (T,\alpha |Y)+\delta )n)\\&\le \exp ((h_\mu (T,\alpha |Y)+\delta )n), \end{aligned} \end{aligned}$$

the set \(I_n\) can be covered by at most \(\exp ((h_\mu (T,\alpha |Y)+\delta )n)\) elements of the partition \(\alpha _0^{n-1}\). Then

$$\begin{aligned} N_{\mu _y}({\mathcal {U}}_0^{n-1},\rho )\le N_{\mu _y}(\alpha _0^{n-1},\rho )\le \exp ((h_\mu (T,\alpha |Y)+\delta )n). \end{aligned}$$

Thus for any \(\delta >0\),

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{1}{n}\int \log N_{\mu _y}({\mathcal {U}}_0^{n-1},\rho )d\mu (y)\le h_\mu (T,\alpha |Y)+\delta . \end{aligned}$$

Letting \(\delta \rightarrow 0\), we obtain \({\overline{h}}^{S}_{\mu }(T,{\mathcal {U}},\rho |Y)\le h_\mu (T,\alpha |Y).\) Taking infimum over \(\alpha \succeq {\mathcal {U}}\), we have

$$\begin{aligned} {\overline{h}}^{S}_{\mu }(T,{\mathcal {U}},\rho |Y)\le h_\mu (T,{\mathcal {U}}|Y). \end{aligned}$$

\(\square \)

Lemma 6.4

Let \(\mu \in {\mathcal {E}}_T(X)\) and \({\mathcal {U}}\in {\mathcal {C}}_X^o\). Then

$$\begin{aligned} h_\mu (T,{\mathcal {U}}|Y)\le {\underline{h}}^{S}_{\mu }(T,{\mathcal {U}}|Y). \end{aligned}$$

Proof

Let \(\mu \in {\mathcal {E}}_T(X)\). If the system (XT) is periodic, then \(\mu \) is supported on a fixed point of T and

$$\begin{aligned} {\underline{h}}^{S}_{\mu }(T,{\mathcal {U}}|Y)=h_\mu (T,{\mathcal {U}}|Y)=0. \end{aligned}$$

Thus let us assume (XT) is aperiodic.

Fix \(n\in {\mathbb {N}}\). Let \(\beta \) be constructed as in the proof of Lemma 6.1 for \({\mathcal {V}}= {\mathcal {U}}_0^{n-1}\). We also use the notation from that proof, for example, A is the subset of X such that \(\mu (A)<\rho \) and for any \(x\notin A\), \(N_{\mu _x}(\beta , \rho )\le N_{\mu _x}({\mathcal {U}}_0^{n-1}, \rho )\). Choose \(\delta >0\) such that \(0<\rho +\delta <1/4\). By Lemma 6.2, we can construct a strong Rohlin tower with respect to \(\beta \), with height n and error \(<\delta \). Let \({\tilde{B}}\) denote the base of the tower and \(B={\tilde{B}} \setminus A\). Clearly, \(\mu (B)>(1-\rho )\mu ({\tilde{B}})\) and \(\mu (E)\ge 1-(\rho +\delta )\) where \(E=\cup _{i=0}^{n-1}T^iB\). Consider \(\beta |_{{\tilde{B}}}\) and index its elements by sequences \(i_0, \cdots , i_{n-1}\) such that if \(B_{i_0, \cdots , i_{n-1}}\in \beta |_{{\tilde{B}}}\), then \(T^jB_{i_0, \cdots , i_{n-1}} \subset U_{i_j}\) for every \(0\le j\le n-1\). Let \({\hat{\alpha }}:=\{{\hat{A}}_1, \cdots , {\hat{A}}_M\}\) be a partition of E defined by

$$\begin{aligned} {\hat{A}}_m:=\cup \{T^jB_{i_0, \cdots , i_{n-1}}: 0\le j\le n-1, i_j=m\}. \end{aligned}$$

Note that \({\hat{A}}_m \subset U_m\) for every \(1\le m\le M\). Extend \({\hat{\alpha }}\) to a partition \(\alpha \) of X in some way such that \(\alpha \succeq {\mathcal {U}}\) and \(\#\alpha =2M\).

Set \(\eta ^4=\rho +\delta \) and define for every \(k>n\) large enough, \(f_k(x)=\frac{1}{k}\sum _{i=0}^{k-1}\chi _E(T^ix)\) and \(L_k:=\{x\in X: f_k(x)>1-\eta ^2\}\). Then by Birkhoff ergodic theorem \(\int f_k >1-\eta ^4\), and

$$\begin{aligned} \eta ^2\cdot \mu (L_k^c)\le \int _{L_k^c}1-f_k\le \int _{X}1-f_k\le \eta ^4 \end{aligned}$$

which gives \(\mu (L_k)\ge 1-\eta ^2\). Put \(J_k\) to be the set of \(x\in X\) such that for any \(j\ge k\),

$$\begin{aligned} \mu _x(\alpha _0^{j-1}(x))<\exp (-(h_\mu (T,\alpha |Y)-\eta )j), \end{aligned}$$
(4)

and

$$\begin{aligned} |\frac{1}{j}\sum _{i=0}^{j-1}\log N_{\mu _{T^{i}x}} ({\mathcal {U}}_0^{n-1},\rho ) \chi _B(T^ix)-\int _B \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho ) d\mu (z)|\le \eta . \end{aligned}$$
(5)

By Theorem 3.1 and the Birkhoff ergodic theorem, \(\mu (J_k)>1-\eta ^2\) for k large enough. Set \(G_k=L_k\cap J_k\) and then \(\mu (G_k)>1-2\eta ^2\). Define \({\tilde{G}}_k=\{x\in G_k:\mu _x(G_k)\ge 1-4\eta \},\) then

$$\begin{aligned} {\tilde{G}}_k^c=\{x\in G_k:\mu _x(G_k)<1-4\eta \}\cup G_k^c=\{x\in G_k:\mu _x(G^c_k)>4\eta \}\cup G_k^c. \end{aligned}$$

Therefore,

$$\begin{aligned} \mu ({\tilde{G}}_k^c)\cdot 4\eta \le \int \mu _x(G_k^c)d\mu (x)+\mu (G_k^c)=2\mu (G_k^c)\le 4\eta ^2, \end{aligned}$$

i.e., \(\mu ({\tilde{G}}_k^c)\le \eta \).

We fix an element \(C_y\) of this partition of \(G_k\cap \pi ^{-1}\pi y\) and want to estimate the number of \(\alpha _0^{n-1}\)-elements needed to cover it. If \(0 \le i_1< \cdots < i_m\le k-n\) are the times elements of \(C_y\) visit B, then we need at most \(N_{\mu _{T^{i_j}y}} ({\mathcal {U}}_0^{n-1},\rho )\) \(\alpha _{i_j}^{i_j+n-1}\)-elements to cover \(C_y\). Because the size of \([0, k-1]\setminus \cup _j[i_j, i_j+n-1]\) is at most \(\eta ^2 k+2n\), we need at most \(\prod _{j=1}^mN_{\mu _{T^{i_j}y}} ({\mathcal {U}}_0^{n-1},\rho )\cdot (2M)^{\eta ^2 k+2n}\) \(\alpha _0^{k-1}\)-elements to cover \(C_y\). Finally, in view of (5), we know that \(G_k\cap \pi ^{-1}\pi y\) can be covered by no more than

$$\begin{aligned} e^{kH(\eta ^2+2n/k)}\cdot (2M)^{\eta ^2 k+2n}\cdot e^{k(\int _B \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho )d\mu (z)+\eta )} \end{aligned}$$
(6)

\(\alpha _0^{k-1}\)-elements, where \(H(t):=-t\log t-(1-t)\log (1-t)\). Since \(y\in G_k\subset J_k\), any \(V\in \alpha _0^{k-1}\) intersecting nontrivially with \(G_k\cap \pi ^{-1}\pi y\) has \(\mu _y\)-measure less than \(\exp (-(h_\mu (T,\alpha |Y)-\eta )k)\) by (4). Thus we have

$$\begin{aligned} \begin{aligned}&1-4\eta \le \mu _y(G_k\cap \pi ^{-1}\pi y)\\&\quad \le e^{-(h_\mu (T,\alpha |Y)-\eta )k}e^{kH(\eta ^2+2n/k)}\cdot (2M)^{\eta ^2 k+2n} \cdot e^{k(\int _B \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho )d\mu (z)+\eta )}. \end{aligned} \end{aligned}$$
(7)

Recall that the distribution of \(\beta \) is the same as the distribution of the partition \(\beta |_{{\tilde{B}}}\) and \(z\mapsto N_{\mu _z} ({\mathcal {U}}_0^{n-1},\rho )\) is constant on each atom of \(\beta |_{X\setminus A}\) by Lemma 6.1. Then by (7) and setting \(k\rightarrow \infty \), we get

$$\begin{aligned} \begin{aligned}&h_\mu (T,\alpha |Y)\\&\quad \le \eta +H(\eta ^2)+\eta ^2 \log (2M)+\int _B \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho )d\mu (z)+\eta \\&\quad \le 2\eta +H(\eta ^2)+\eta ^2 \log (2M)+\frac{1}{n}\int \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho ) d\mu (z). \end{aligned} \end{aligned}$$

By letting \(\delta \rightarrow 0\), we obtain

$$\begin{aligned} \begin{aligned} h_\mu (T,\alpha |Y) \le 2\rho ^{\frac{1}{4}}+H(\rho ^{\frac{1}{2}})+\rho ^{\frac{1}{2}} \log (2M)+\frac{1}{n}\int \log N_{\mu _{z}} ({\mathcal {U}}_0^{n-1},\rho ) d\mu (z). \end{aligned} \end{aligned}$$

Taking \(\liminf _{n\rightarrow \infty }\) and then \(\lim _{\rho \rightarrow 0}\), we have

$$\begin{aligned} \begin{aligned} h_\mu (T,{\mathcal {U}}|Y)\le h_\mu (T,\alpha |Y)\le {\underline{h}}^{S}_{\mu }(T,{\mathcal {U}}|Y). \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W. On Relative Metric Mean Dimension with Potential and Variational Principles. J Dyn Diff Equat 35, 2313–2335 (2023). https://doi.org/10.1007/s10884-022-10175-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10175-w

Keywords

Mathematics Subject Classification

Navigation