Skip to main content
Log in

Weak Solutions of a Stochastic Landau–Lifshitz–Gilbert Equation Driven by Pure Jump Noise

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work we study a stochastic three-dimensional Landau–Lifshitz–Gilbert equation perturbed by pure jump noise in the Marcus canonical form. We show the existence of a weak martingale solution taking values in a two-dimensional sphere \({\mathbb{S}^2}\) and discuss certain regularity results. The construction of a solution is based on the classical Faedo–Galerkin approximation, the compactness methods and the Jakubowski version of the Skorokhod Theorem for nonmetric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, D.W., Worledge, D.C.: Low power scaling using parallel coupling for toggle magnetic random access memory. Appl. Phys. Lett. 88(26) (2006), Article Number: 262505

  2. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  3. Albeverio S., Brzeźniak Z., Wu J.-L.: Existence of global solutions and invariant measures for stochastic differential equation driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371, 309–322 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Aldous D.: Stopping times and tightness. Ann. Probab. 6, 335–340 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Alouges F., Soyeur A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Alouges F., de Bouard A., Hocquet A.: A semi-discrete scheme for the stochastic Landau–Lifshitz equation. Stoch. Partial Differ. Equ. Anal. Comput. 2(3), 281–315 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Applebaum D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Applebaum D., Tang F.: Stochastic flows of diffeomorphisms on manifolds driven by infinite-dimensional semimartingales with jumps. Stoch. Process. Appl. 92(2), 219–236 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Ban̆as L̆., Brzeźniak Z., Prohl A.: Computational studies for the stochastic Landau–Lifshitz–Gilbert equation. SIAM J. Sci. Comput. 35(1), B62–B81 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Ban̆as L̆., Brzeźniak Z., Neklyudov M., Prohl A.: A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA J. Numer. Anal. 34(2), 502–549 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Ban̆as, L̆., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic ferromagnetism: analysis and numerics. De Gruyter Studies in Mathematics, 58, De Gruyter, Berlin (2014)

  12. Berkov, D.V.: Magnetization dynamics including thermal fluctuations: basic phenomenology, fast remagnetization processes and transitions over high-energy barriers. In: Kronmüller, H., Parkin, S. (eds.), Handbook of Magnetism and Advanced Magnetic Materials, vol. 2 Micromagnetism. Wiley, London (2007)

  13. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics. 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Blundell S.: Magnetism in Condensed Matter. Oxford University Press, Oxford (2001)

    Google Scholar 

  15. Brezis H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  16. Brown W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    ADS  Google Scholar 

  17. Brown W.F.: Micromagnetics. Robert E. Krieger Publishing Company, New York (1978)

    Google Scholar 

  18. Brzeźniak, Z., Carroll, A.: The stochastic nonlinear heat equation (in preparation)

  19. Brzeźniak Z., Elworthy K.D.: Stochastic differential equations on Banach manifolds. Methods Funct. Anal. Topol. 6(1), 43–84 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Weak solutions of a stochastic Landau–Lifshitz–Gilbert equation. Appl. Math. Res. Express. 2013, 1–33 (2013). https://doi.org/10.1093/amrx/abs009

  21. Brzeźniak Z., Goldys B., Jegaraj T.: Large deviations and transitions between equilibria for stochastic Landau–Lifshitz–Gilbert equation. Arch. Ration. Mech Anal. 226, 497–558 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Brzeźniak Z., Hausenblas E., Razafimandimby P.: Stochastic reaction–diffusion equations driven by jump processes. Potential Anal. 49(1), 131–201 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Brzeźniak Z., Hausenblas E.: Maximal regularity for stochastic convolution driven by Lévy processes. Probab. Theory Relat. Fields 145, 615–637 (2009)

    MATH  Google Scholar 

  24. Brzeźniak Z., Hausenblas E., Zhu J.: 2D stochastic Navier–Stokes equations driven by jump noise. Nonlinear Anal. 79, 122–139 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Brzeźniak, Z., Hornung, F., Manna, U.: Weak martingale solutions for the stochastic nonlinear Schrödinger equation driven by pure jump noise. arXiv:1809.10013v1

  26. Brzeźniak, Z., Hornung, F., Weis, L.: Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. Probab. Theory Relat. Fields (2018). https://doi.org/10.1007/s00440-018-0882-5

    MATH  Google Scholar 

  27. Brzeźniak, Z., Li, L.: Weak solutions of the Stochastic Landau–Lifshitz–Gilbert equations with nonzero anisotrophy energy. Appl. Math. Res. Express (2016). https://doi.org/10.1093/amrx/abw003

    MathSciNet  MATH  Google Scholar 

  28. Brzeźniak, Z., Manna, U.: Stochastic Landau–Lifshitz–Gilbert equation with anisotropy energy driven by pure jump noise. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2018.08.009

    MathSciNet  Google Scholar 

  29. Brzeźniak, Z., Manna, U., Panda, A.A.: Martingale solutions of nematic liquid crystals driven by pure jump noise in the Marcus canonical form. J. Differ. Equ. (2018). https://doi.org/10.1016/j.jde.2018.11.001

    ADS  MathSciNet  MATH  Google Scholar 

  30. Brzeźniak Z., Maslowski B., Seidler J.: Stochastic nonlinear beam equations. Probab. Theory Relat. Fields 132(1), 119–149 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Brzeźniak Z., Ondreját M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. Ann. Probab. 41(3B), 1938–1977 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Carmona, R., Rozovskii, B. (eds.): Stochastic partial differential equations: six perspectives. Mathematical Surveys and Monographs, vol. 64. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  33. Carroll, A.: The stochastic nonlinear heat equation. Ph.D. thesis, University of Hull (1999)

  34. Chechkin, A., Pavlyukevich, I.: Marcus versus Stratonovich for systems with jump noise. J. Phys. A Math. Theor. 47, 342001 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Chevyrev, I., Friz, P.K.: Canonical RDEs and general semimartingales as rough paths. arXiv:1704.08053 [math.PR]

  36. Chung K.L., Williams R.J.: Introduction to Stochastic Integration. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  37. Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  38. Faddeev L.D., Takhtajan L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    MATH  Google Scholar 

  39. Flandoli F., Gatarek D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Fontana, R.E., Hetzler, S.R.: Magnetic memories: memory hierarchy and processing perspectives. J. Appl. Phys. 99(8) (2006) Article Number: 08N902

  41. Gilbert T.L.: A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  42. Goldys B., Le K.N., Tran T.: A finite element approximation for the stochastic Landau–Lifshitz–Gilbert equation. J. Differ. Equ. 260(2), 937–970 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Guo B., Hong M.-C.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. 1, 311–334 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Guo B., Pu X.: Stochastic Landau–Lifshitz equation. Differ. Integral Equ. 22, 251–274 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Gyöngy, I., Krylov, NV.: On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces. Stochastics 6(3-4), 153-173 (1981/82)

    MATH  Google Scholar 

  46. Garcia-Palacios J.L., Lázaro F.J.: Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58(22), 14937–14958 (1998)

    ADS  Google Scholar 

  47. Henry, D.: Geometric theory of semilinear parabolic equations. In: Lecture Notes in Mathematics, vol. 840. Springer (1981)

  48. Ikeda N., Watanabe S.: Stochastic Differential Equations and Diffusion Processes. Kodansha Scientific Books, Tokyo (1990)

    MATH  Google Scholar 

  49. Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor.Veroyatnost. i Primenen. 42(1), 209–216 (1997); Translation in Theory Probab. Appl. 42(1), 167–174 (1998)

    MathSciNet  Google Scholar 

  50. Joffe A., Métivier M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)

    MathSciNet  MATH  Google Scholar 

  51. Kallenberg O.: Foundations of Modern Probability. Springer, Berlin (2002)

    MATH  Google Scholar 

  52. Kamppeter T., Mertenset. al. F.G.: Stochastic vortex dynamics in two-dimensional easy-plane ferromagnets: Multiplicative versus additive noise. Phys. Rev. B 59(17), 11349–11357 (1999)

    ADS  Google Scholar 

  53. Kazantseva N., Hinzke D., Nowak U., Chantrell R.W., Atxitia U., Chubykalo-Fesenko O.: Towards multiscale modeling of magnetic materials: simulation of FePt. Phys. Rev. B 77, 184428 (2008)

    ADS  Google Scholar 

  54. Kohn R.V., Otto F., Reznikoff M., Vanden-Eijnden E.: Action minimization and sharp-interface limits for the stochastic Allen–Cahn equation. Commun. Pure Appl. Math. 60(3), 393–438 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Kohn, R.V., Reznikoff, M.G., Vanden-Eijnden, E.: Magnetic elements at finite temperature and large deviation theory. J. Nonlinear Sci. 15(4), 223–253 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Real and Stochastic Analysis, Trends in Mathematics, pp. 305–373, Boston (2004)

  57. Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153 (1935); terHaar, D. (eds.) Reproduced in: Collected Papers of L. D. Landau, pp. 101–114. Pergamon Press, New York (1965)

  58. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

  59. Lions J.L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, I. Springer, Berlin (1972)

    MATH  Google Scholar 

  60. Marcus S.L.: Modelling and approximations of stochastic differential equations driven by semimartingales. Stochastics 4, 223–245 (1981)

    MATH  Google Scholar 

  61. Mayergoyz I., Bertotti G., Serpico C.: Magnetization dynamics driven by a jump-noise process. Phys. Rev. B 83, 020402(R) (2011)

    ADS  Google Scholar 

  62. Mayergoyz I., Bertotti G., Serpico C.: Landau–Lifshitz magnetization dynamics driven by a random jump-noise process. J. Appl. Phys. 109, 07D312 (2011)

    Google Scholar 

  63. Métivier, M.: Stochastic partial differential equations in infinite-dimensional spaces. with a preface by G. Da Prato. Scuola Normale Superiore di Pisa. Quaderni. Pisa (1988)

  64. Motyl E.: Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-Abstract framework and applications. Stoch. Process. Their Appl. 124, 2052–2097 (2014)

    MATH  Google Scholar 

  65. Motyl E.: Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal. 38, 863–912 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Motyl, E.: Martingale Solutions to the 2D and 3D Stochastic Navier–Stokes Equations Driven by the Compensated Poisson Random Measure. Preprint 13 (2011). Department of Mathematics and Computer Sciences, Lódź University.

  67. Néel L.: Bases d’une nouvelle théorie générale du champ coercitif. Annales de l’université de Grenoble 22, 299–343 (1946)

    MathSciNet  Google Scholar 

  68. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Lévy noise. In: Encyclopedia of Mathematics and Its Applications, vol. 113, Cambridge University Press, Cambridge (2007)

  69. Pardoux E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127–167 (1979)

    MathSciNet  MATH  Google Scholar 

  70. Parthasarathy K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    MATH  Google Scholar 

  71. Scott J.F.: Nano-scale ferroelectric devices for memory applications. Ferroelectric 314, 207–222 (2005)

    Google Scholar 

  72. Simon J.: Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157, 117–148 (1990)

    MathSciNet  MATH  Google Scholar 

  73. Strauss W.A.: On continuity of functions with values in various Banach spaces. Pac. J. Math. 19, 543–551 (1966)

    MathSciNet  MATH  Google Scholar 

  74. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1983)

  75. Temam, R.: Navier–Stokes equations. In: Theory and Numerical Analysis. Reprint of the 1984 edition. AMS Chelsea Publishing, Providence (2001)

  76. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  77. Vakhania N.N., Tarieladze V.I., Chobanyan S.A.: Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht (1987)

    Google Scholar 

  78. Visintin A.: On Landau–Lifshitz’ equations for ferromagnetism. Jpn. J. Appl. Math. 2(1), 69–84 (1985)

    MathSciNet  MATH  Google Scholar 

  79. Weiss P.: L’hypothése du champ moleculaire et la proprieté ferromagnétique. J. Phys. 6, 661–690 (1907)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank David Applebaum for the suggestion of using the Marcus canonical equations. We would also like to thank Ben Goldys for drawing our attention to Barkhausen effect. We dedicate this work to memory of our colleague, collaborator and friend, Terence Jegaraj, who recently tragically passed away and whose dedication and enthusiasm to the subject of stochastic ferromagnetism we will always remember.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Manna.

Additional information

Communicated by M. Hairer

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by a Royal Society Grant (No. IE140328) “Stochastic Landau–Lifshitz–Gilbert equation with Lévy noise and ferromagnetism”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzeźniak, Z., Manna, U. Weak Solutions of a Stochastic Landau–Lifshitz–Gilbert Equation Driven by Pure Jump Noise. Commun. Math. Phys. 371, 1071–1129 (2019). https://doi.org/10.1007/s00220-019-03359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03359-x

Navigation