Communications in Mathematical Physics

, Volume 365, Issue 2, pp 471–513 | Cite as

Moduli Space of Supersymmetric Solitons and Black Holes in Five Dimensions

  • Veronika Breunhölder
  • James LuciettiEmail author
Open Access


We determine all asymptotically flat, supersymmetric and biaxisymmetric soliton and black hole solutions to five-dimensional minimal supergravity. In particular, we show that the solution must be a multi-centred solution with a Gibbons–Hawking base. The proof involves combining local constraints from supersymmetry with global constraints for stationary and biaxisymmetric spacetimes. This reveals that the horizon topology must be one of S3, \({{S}^{1}\times {S}^{2}}\) or a lens space L(p, 1), thereby providing a refinement of the allowed horizon topologies.We construct the general smooth solution for each possible rod structure. We find a large moduli space of black hole spacetimes with noncontractible 2-cycles for each of the allowed horizon topologies. In the absence of a black hole, we obtain a classification of the known ‘bubbling’ soliton spacetimes.



VB is supported by an EPSRC studentship. JL is supported by STFC [ST/L000458/1].


  1. 1.
    Chrusciel P.T., Lopes Costa J., Heusler M.: Stationary black holes: uniqueness and beyond. Living Rev. Rel. 15, 7 (2012) arXiv:1205.6112 CrossRefzbMATHGoogle Scholar
  2. 2.
    Emparan R., Reall H.S.: Black holes in higher dimensions.. Living Rev.Rel. 11, 6 (2008) arXiv:0801.3471 CrossRefzbMATHGoogle Scholar
  3. 3.
    Bena I., Warner N.P.: Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1 (2008) arXiv:hep-th/0701216 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gibbons G.W., Warner N.P.: Global structure of five-dimensional fuzzballs. Class. Quant. Grav. 31, 025016 (2014) arXiv:1305.0957 ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Kunduri H.K., Lucietti J.: The first law of soliton and black hole mechanics in five dimensions. Class. Quant. Grav. 31, 032001 (2014) arXiv:1310.4810 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kunduri H.K., Lucietti J.: Black hole non-uniqueness via spacetime topology in five dimensions. JHEP 10, 082 (2014) arXiv:1407.8002 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Horowitz G.T., Kunduri H.K., Lucietti J.: Comments on black holes in bubbling space times. JHEP 06, 048 (2017) arXiv:1704.04071 ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Kunduri H.K., Lucietti J.: Supersymmetric black holes with lens-space topology. Phys. Rev. Lett 113, 211101 (2014) arXiv:1408.6083 ADSCrossRefGoogle Scholar
  9. 9.
    Tomizawa S.M.: Nozawa: Supersymmetric black lenses in five dimensions. Phys. Review D. 94, 4 (2016) arXiv:1606.06643 CrossRefGoogle Scholar
  10. 10.
    Hollands S., Ishibashi A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quant. Grav. 29, 163001 (2012)arXiv:1206.1164 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friedman J.L., Schleich K., Witt D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1995)arXiv:gr-qc/9305017, [Erratum: Phys. Rev. Lett.75,1872(1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Galloway G.J., Schoen R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006) arXiv:gr-qc/0509107 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hollands S., Ishibashi A., Wald R.M.: A Higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699 (2007) arXiv:gr-qc/0605106 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static vacuum black holes in higher dimensions. Prog. Theor. Phys. Suppl. 148, 284 (2003) arXiv:gr-qc/0203004 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66, 044010 (2002) arXiv:hep-th/0206136 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002) arXiv:hep-th/0206049 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kunduri,H.K., Lucietti, J.:No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory. arXiv:1712.02668 (2017)
  18. 18.
    Emparan R., Reall H.S.: Generalized Weyl solutions. Phys. Rev. D 65, 084025 (2002) arXiv:hep-th/0110258 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004) arXiv:hep-th/0408141 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hollands S., Yazadjiev S.: Uniqueness theorem for 5-dimensional black holes with two axial Killing fields. Commun. Math. Phys. 283, 749 (2008) arXiv:0707.2775 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hollands S., Yazadjiev S.: A Uniqueness theorem for stationary Kaluza–Klein black holes. Commun. Math. Phys. 302, 631 (2011) arXiv:0812.3036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hollands S., Yazadjiev S.: A Uniqueness theorem for 5-dimensional Einstein–Maxwell black holes. Class. Quant. Grav. 25, 095010 (2008) arXiv:0711.1722 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tomizawa S., Yasui Y., Ishibashi A.: Uniqueness theorem for charged dipole rings in five-dimensional minimal supergravity. Phys. Rev. D 81, 084037 (2010) arXiv:0911.4309 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Armas J., Harmark T.: Uniqueness theorem for black hole space-times with multiple disconnected horizons. JHEP 05, 093 (2010) arXiv:0911.4654 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yazadjiev S.: Uniqueness and nonuniqueness of the stationary black holes in 5D Einstein–Maxwell and Einstein–Maxwell-dilaton gravity. JHEP 06, 083 (2011) arXiv:1104.0378 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Armas J.: Uniqueness of black holes with bubbles in minimal supergravity. Class. Quant. Grav. 32, 045001 (2015) arXiv:1408.4567 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yazadjiev S.S., Nedkova P.G.: Magnetized configurations with black holes and Kaluza–Klein bubbles: Smarr-like relations and first law. Phys. Rev. D 80, 024005 (2009) arXiv:0904.3605 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Yazadjiev S.S.: A Uniqueness theorem for black holes with Kaluza–Klein asymptotic in 5D Einstein– Maxwell gravity. Phys. Rev. D 82, 024015 (2010) arXiv:1002.3954 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Haas, P.A.:Mass formula of a five-dimensional almost-BPS supergravity soliton with a magnetic "Bolt". arXiv:1511.02005 (2015)
  30. 30.
    Haas, P.: Topological sources of soliton mass and supersymmetry breaking. Class. Quantum Grav. 35 arXiv:1705.03992 (2017)
  31. 31.
    Khuri,M.,Weinstein, G., Yamada, S.: Stationary vacuum black holes in 5 dimensions. arXiv:1711.05229 (2017)
  32. 32.
    Reall H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2004) arXiv:hep-th/0408141 [Erratum: Phys. Rev.D70,089902] (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Gutowski J.B.: Uniqueness of five-dimensional supersymmetric black holes. JHEP 08, 049 (2004) arXiv:hep-th/0404079 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Breckenridge J.C., Myers R.C., Peet A.W., Vafa C.: D-branes and spinning black holes. Phys. Lett. B 391, 93 (1997) arXiv:hep-th/9602065 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chrusciel P.T., Reall H.S., Tod P.: On Israel–Wilson–Perjes black holes. Class. Quant. Grav. 23, 2519 (2006) arXiv:gr-qc/0512116 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gauntlett J.P., Gutowski J.B., Hull C.M., Pakis S., Reall H.S.: All super symmetric solutions of minimal supergravity in five-dimensions. Class. Quant. Grav. 20, 4587 (2003) arXiv:hep-th/0209114 ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Elvang H., Emparan R., Mateos D., Reall H.S.: A supersymmetric black ring. Phys. Rev. Lett. 93, 211302 (2004) arXiv:hep-th/0407065 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Gauntlett J.P., Gutowski J.B.: Concentric black rings. Phys. Rev. D 71, 025013 (2005) arXiv:hep-th/0408010 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Bena I., Warner N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006) arXiv:hep-th/0505166 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Berglund P., Gimon E.G., Levi T.S.: Supergravity microstates for BPS black holes and black rings. JHEP 06, 007 (2006) arXiv:hep-th/0505167 ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Chrusciel P.T.: On higher dimensional black holes with abelian isometry group. J. Math. Phys. 50, 052501 (2009) arXiv:0812.3424 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Niehoff B.E., Reall H.S.: Evanescent ergosurfaces and ambipolar hyperkähler metrics. JHEP 04, 130 (2016) arXiv:1601.01898 ADSzbMATHGoogle Scholar
  43. 43.
    Gibbons G.W., Ruback P.J.: The hidden symmetries of multicenter metrics. Commun. Math.Phys. 115, 267 (1988)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Tomizawa S., Yasui Y., Ishibashi A.: Uniqueness theorem for charged rotating black holes in five dimensional minimal supergravity. Phys. Rev. D 79, 124023 (2009) arXiv:0901.4724 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Figueras P., Lucietti J.: On the uniqueness of extremal vacuum black holes. Class. Quant. Grav. 27, 095001 (2010) arXiv:0906.5565 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kunduri H.K., Lucietti J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Rel. 16, 8 (2013) arXiv:1306.2517 CrossRefzbMATHGoogle Scholar
  47. 47.
    Chrusciel P.T., Nguyen L.: A uniqueness theorem for degenerate Kerr–Newman black holes. Annales Henri Poincare 11, 585 (2010) arXiv:1002.1737 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Crichigno P.M., Porri F., Vandoren S.: Bound states of spinning black holes in five dimensions. JHEP 05, 101 (2017) arXiv:1603.09729 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tomizawa S., Okuda T.: Asymptotically flat multiblack lenses. Phys. Rev. D 95, 064021 (2017) arXiv:1701.06402 ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Gauntlett J.P., Myers R.C., Townsend P.K.: Black holes of D = 5 supergravity. Class. Quant. Grav. 16, 1 (1999) arXiv:hep-th/9810204 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Dunajski M., Hartnoll S.A.: Einstein–Maxwell gravitational instantons and five dimensional solitonic strings. Class. Quant. Grav. 24, 1841 (2007) arXiv:hep-th/0610261 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Avila, J., Ramirez, P.F., Ruiperez, A.: One thousand and one bubbles. arXiv:1709.03985 (2017)

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematics and Maxwell Institute of Mathematical SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations