Skip to main content
Log in

Universality at Weak and Strong Non-Hermiticity Beyond the Elliptic Ginibre Ensemble

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider non-Gaussian extensions of the elliptic Ginibre ensemble of complex non-Hermitian random matrices by fixing the trace Tr(XX*) of the matrix X with a hard or soft constraint. These ensembles have correlated matrix entries and non-determinantal joint densities of the complex eigenvalues. We study global and local bulk statistics in these ensembles, in particular in the limit of weak non-Hermiticity introduced by Fyodorov, Khoruzhenko and Sommers. Here, the support of the limiting measure collapses to the real line. This limit was motivated by physics applications and interpolates between the celebrated sine and Ginibre kernel. Our results constitute a first proof of universality of the interpolating kernel. Furthermore, in the limit of strong non-Hermiticity, where the support of the limiting measure remains an ellipse, we obtain local Ginibre statistics in the bulk of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington, D.C. (1964)

  2. Akemann G.: Microscopic universality of complex matrix model correlation functions at weak non-Hermiticity. Phys. Lett. B 547(1), 100–108 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Akemann, G., Baik, J., Di Francesco, P. (eds).: The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

  4. Akemann G., Bender M.: Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles. J. Math. Phys. 51(10), 103524 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Akemann G., Cicuta G.M., Molinari L., Vernizzi G.: Compact support probability distributions in random matrix theory. Phys. Rev. E 59(2), 1489–1497 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Akemann, G., Phillips, M.J.: Universality conjecture for all Airy, sine and Bessel kernels in the complex plane. In: Deift, P., Forrester, P.J. (eds.) Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, volume 65 of Mathematical Sciences Research Institute Publications, pp. 1–23. Cambridge University Press, New York (2014)

  7. Akemann G., Vernizzi G.: Macroscopic and microscopic (non-)universality of compact support random matrix theory. Nucl. Phys. B 583(3), 739–757 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ameur Y., Hedenmalm H., Makarov N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem (2016). arXiv:1609.08582

  10. Bender M.: Edge scaling limits for a family of non-Hermitian random matrix ensembles. Probab. Theory Relat. Fields 147(1-2), 241–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: bulk universality (2008). arXiv:0811.3341

  12. Bleher P.M., Kuijlaars A.B.J.: Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math. 230(3), 1272–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chafaï D., Péché S.: A note on the second order universality at the edge of Coulomb gases on the plane. J. Stat. Phys. 156, 368–383 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen Y., Liu D.-Z., Zhou D.-S.: Smallest eigenvalue distribution of the fixed-trace Laguerre beta-ensemble. J. Phys. A. 43(31), 315303, 13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delannay R., Le Caër G.: Exact densities of states of fixed trace ensembles of random matrices. J. Phys. A 33(14), 2611 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Francesco P., Gaudin M., Itzykson C., Lesage F.: Laughlin’s wave functions, Coulomb gases and expansions of the discriminant. Int. J. Mod. Phys. A 9(24), 4257–4351 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dunster T.M., Paris R.B., Cang S.: On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5(3), 223–247 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Efetov K.B.: Directed quantum chaos. Phys. Rev. Lett. 79(3), 491–494 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  19. Elbau P., Felder G.: Density of eigenvalues of random normal matrices. Commun. Math. Phys. 259(2), 433–450 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fyodorov Y.V., Khoruzhenko B.A., Sommers H.-J.: Almost Hermitian random matrices: crossover from Wigner-Dyson to Ginibre eigenvalue statistics. Phys. Rev. Lett. 79(4), 557 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fyodorov Y.V., Khoruzhenko B.A., Sommers H.-J.: Almost-Hermitian random matrices: eigenvalue density in the complex plane. Phys. Lett. A 226(1), 46–52 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fyodorov Y.V., Khoruzhenko B.A., Sommers H.-J.: Universality in the random matrix spectra in the regime of weak non-Hermiticity. Ann. Inst. H. Poincaré Phys. Théor. 68(4), 449–489 (1998) Classical and quantum chaos

    MathSciNet  MATH  Google Scholar 

  23. Fyodorov Y.V., Sommers H.-J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A Math. Gen. 36(12), 3303 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Götze F., Gordin M.: Limit correlation functions for fixed trace random matrix ensembles. Commun. Math. Phys. 281(1), 203–229 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Leblé T.: Local microscopic behavior for 2D Coulomb gases. Probab. Theory Relat. Fields 169, 931–976 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leblé, T., Serfaty, S.: Fluctuations of Two-Dimensional Coulomb Gases (2016). arXiv:1609.08088

  28. Ledoux M.: Complex Hermite polynomials: from the semi-circular law to the circular law. Commun. Stoch. Anal. 2(1), 27–32 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Lee S.-Y., Riser R.: Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case. J. Math. Phys. 57(2), 023302 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Liu D.-Z., Zhou D.-S.: Some universal properties for restricted trace Gaussian orthogonal, unitary and symplectic ensembles. J. Stat. Phys. 140(2), 268–288 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Mehta, M.L.: Random Matrices, volume 142 of Pure and Applied Mathematics (Amsterdam), 3rd edn. Elsevier, Amsterdam (2004)

  32. Rosenzweig, N.: Statistical mechanics of equally likely quantum systems. In: Ford, K.W. (ed.) Statistical Physics (Brandeis Summer Institute, 1962, Vol. 3), pp. 91–158. W. A. Benjamin, New York (1963)

  33. Splittorff K., Verbaarschot J.J.M.: Factorization of correlation functions and the replica limit of the toda lattice equation. Nucl. Phys. B 683(3), 467–507 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tao T., Vu V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Temme N.M.: The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10(4), 757–766 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eijndhoven S.J.L., Meyers J.L.H.: New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146(1), 89–98 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou D.-S., Liu D.-Z., Qian T.: Fixed trace \({\beta}\)-Hermite ensembles: asymptotic eigenvalue density and the edge of the density. J. Math. Phys. 51(3), 033301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the German research council DFG through Grants AK35/2-1 (G.A.), IGK “Stochastics and Real World Models” Beijing–Bielefeld (M.C.), and CRC 701 “Spectral Structures and Topological Methods in Mathematics” (M.V.), as well as by the European Research Council under the European Unions Seventh Framework Programme (FP/2007/2013)/ERC Grant Agreement No. 307074 (M.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Akemann.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akemann, G., Cikovic, M. & Venker, M. Universality at Weak and Strong Non-Hermiticity Beyond the Elliptic Ginibre Ensemble. Commun. Math. Phys. 362, 1111–1141 (2018). https://doi.org/10.1007/s00220-018-3201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3201-1

Navigation