Skip to main content
Log in

Tilings of Non-convex Polygons, Skew-Young Tableaux and Determinantal Processes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper studies random lozenge tilings of general non-convex polygonal regions. We show that the pairwise interaction of the non-convexities leads asymptotically to new kernels and thus to new statistics for the tiling fluctuations. The precise geometrical figure here consists of a hexagon with cuts along opposite edges. For this model, we take limits when the size of the hexagon and the cuts tend to infinity, while keeping certain geometric data fixed in order to guarantee sufficient interaction between the cuts in the limit. We show in this paper that the kernel for the finite tiling model can be expressed as a multiple integral, where the number of integrations is related to the fixed geometric data above. The limiting kernel is believed to be a universal master kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M., Chhita S., Johansson K., vanMoerbeke P.: Tacnode GUE-minor processes and double Aztec diamonds. Probab. Theory Relat. Fields 162(1–2), 275–325 (2015)

    Article  MathSciNet  Google Scholar 

  2. Adler M., Johansson K., van Moerbeke P.: Double Aztec diamonds and the tacnode process. Adv. Math. 252, 518–571 (2014)

    Article  MathSciNet  Google Scholar 

  3. Adler, M., Johansson, K., van Moerbeke, P.: Lozenge tilings of hexagons with cuts and asymptotic fluctuations: a new universality class. Math. Phys. Anal. Geom. 21, 1–53 (2018). arXiv:1706.01055

    Article  MathSciNet  Google Scholar 

  4. Adler,M., van Moerbeke, P.: Coupled GUE-minor processes and domino tilings. Int.Math. Res. Not. 21, 10987–11044 (2015). arXiv:1312.3859

    Article  MathSciNet  Google Scholar 

  5. Adler, M., van Moerbeke, P.: Probability distributions related to tilings of non-convex polygons. J. Math. Phys. (Special issue to the memory of Ludvig Faddeev: to appear 2018)

  6. Betea, D., Bouttier, J., Nejjar, P., Vuletic, M.: The free boundary Schur process and applications. arXiv:1704.05809

  7. Bufetov, A., Knizel, A.: Asymptotics of random domino tilings of rectangular Aztec diamonds. arXiv:1604.01491

  8. Borodin A., Duits M.: Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincare (B) 47, 243–258 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Borodin A., Ferrari P.L.: Anisotropic growth of random surfaces in 2+1 dimensions. Commun. Math. Phys 325, 603–684 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Borodin, A., Ferrari, P.L., Prähofer,M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007). arXiv:math-ph/0608056

    Article  ADS  MathSciNet  Google Scholar 

  11. Borodin A., Gorin V., Rains E.M.: q-Distributions on boxed plane partitions. Sel. Math. 16, 731–789 (2010)

    Article  MathSciNet  Google Scholar 

  12. Borodin A., Rains E.M.: Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121(3-4), 291–317 (2005) arXiv:math-ph/0409059

    Article  ADS  MathSciNet  Google Scholar 

  13. Borodin, A.: Determinantal Point Processes. The Oxford Handbook of Random Matrix Theory. pp. 231–249. Oxford University Press, Oxford (2011).

  14. Ciucu M., Fischer I.: Lozenge tilings of hexagons with arbitrary dents.. Adv.Appl.Math. 73, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  15. Cohn H., Larsen M., Propp J.: The shape of a typical boxed plane partition. N. Y. J. Math. 4, 137–165 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Defosseux M.: Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. Henri Poincaré Probab. Stat. 46, 209–249 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Defosseux M.: On global fluctuations for non-colliding processes. Ann. Prob. 46, 1279–1350 (2018) arXiv:1510.08248

    Article  MathSciNet  Google Scholar 

  18. Duits, M.: On global fluctuations for non-colliding processes. Ann. Probab. 46(3), 1279–1350 (2018)

    Article  MathSciNet  Google Scholar 

  19. Duse, E., Johansson, K., Metcalfe, A.: The Cusp-Airy process. Electron. J. Probab. 21(57), 50 (2016). arXiv:1510.02057

  20. Duse E., Metcalfe A.: Asymptotic geometry of discrete interlaced patterns: part I. Int. J. Math. 26, 1550093 (2015)

    Article  MathSciNet  Google Scholar 

  21. Duse E., Metcalfe A.: Asymptotic geometry of discrete interlaced patterns: part II. arXiv:1507.00467

  22. Johansson K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259296 (2001)

    Article  MathSciNet  Google Scholar 

  23. Johansson K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280 (2002)

    Article  MathSciNet  Google Scholar 

  24. Johansson K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Johansson K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier (Grenoble) 55, 2129–2145 (2005)

    Article  MathSciNet  Google Scholar 

  26. Johansson K.: The arctic circle boundary and the Airy process. Ann. Probab. 33, 130 (2005)

    Article  MathSciNet  Google Scholar 

  27. Johansson, K.: Edge Fluctuations of Limit Shapes, Harvard Lectures (2016). arXiv:1704.06035

  28. Johansson K., Nordenstam E.: Eigenvalues of GUE minors. Electron. J. Probab. 11, 13421371 (2006)

    Article  MathSciNet  Google Scholar 

  29. Gorin V.E.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42, 180197 (2008)

    Article  MathSciNet  Google Scholar 

  30. Gorin, V.E.: Bulk universality for randomlozenge tilings near straight boundaries and for tensor products. Commun. Math. Phys. 354(1), 317–344 (2017). arXiv:1603.02707

    Article  ADS  MathSciNet  Google Scholar 

  31. Gorin, V.E., Petrov, L.: Universality of local statistics for noncolliding random walks. arXiv:1608.3243

  32. Kasteleyn P.W.: Graph Theory and Crystal Physics GraphTheory and Theoretical Physics, p. 43110.. Academic Press, London (1967)

    MATH  Google Scholar 

  33. Kenyon, R.: Lectures on Dimers Statistical Mechanics, pp. 191–230. IAS/Park CityMathematics Series,16, American Mathematical Society, Providence (2009). arXiv:0910.3129

    Chapter  Google Scholar 

  34. Kenyon R., Okounkov A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007)

    Article  MathSciNet  Google Scholar 

  35. Kenyon R., Okounkov A., Sheffield S.: Dimers and Amoebae. Ann. Math. 163(3), 1019–1056 (2006)

    Article  MathSciNet  Google Scholar 

  36. Krattenthaler, C.: Advanced determinantal calculus, Séminaire Lotharingien Combin. 42 (1999) (The Andrews Festschrift), paper B42q

  37. Krattenthaler C.: Descending plane partitions and rhombus tilings of a hexagon with a triangular hole. Eur. J.Combin. 27(7), 1138–1146 (2006)

    Article  MathSciNet  Google Scholar 

  38. Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs (1995)

  39. MacMahon, P.A.:Memoir on the theory of the partition of numbers. Part V. Partitions in two-dimensional space. Philos. Trans. R. Soc. A (1911)

  40. Metcalfe A.: Universality properties of Gelfand Tsetlin patterns. Probab. Theory Relat. Fields 155(1-2), 303–346 (2013)

    Article  MathSciNet  Google Scholar 

  41. Novak J.: Lozenge tilings and Hurwitz numbers. J. Stat. Phys. 161, 509–517 (2015) arXiv:math/0309074

    Article  ADS  MathSciNet  Google Scholar 

  42. Okounkov A., Reshetikhin N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003)

    Article  MathSciNet  Google Scholar 

  43. Okounkov A., Reshetikhin N.: The birth of a random matrix. Mosc. Math. J. 6, 553–566 (2006) 588

    MathSciNet  MATH  Google Scholar 

  44. Petrov L.: Asymptotics of uniformly random lozenge tilings of polygons. Gaussian Free Field. Ann. Probab. 43, 143 (2015)

    MATH  Google Scholar 

  45. Petrov L.: Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Probab. Theory Relat. Fields 160(3–4), 429–487 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre van Moerbeke.

Additional information

Communicated by A. Borodin

Mark Adler: The support of a Simons Foundation Grant # 278931 is gratefully acknowledged. M.A. thanks the Simons Center for Geometry and Physics for its hospitality.

Kurt Johansson: The support of the Swedish Research Council (VR) and Grant KAW 2010.0063 of the Knut and Alice Wallenberg Foundation are gratefully acknowledged.

Pierre van Moerbeke: The support of a Simons Foundation Grant # 280945 is gratefully acknowledged. PvM thanks the Simons Center for Geometry and Physics, Stony Brook, and the Kavli Institute of Physics, Santa Barbara, for their hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, M., Johansson, K. & van Moerbeke, P. Tilings of Non-convex Polygons, Skew-Young Tableaux and Determinantal Processes. Commun. Math. Phys. 364, 287–342 (2018). https://doi.org/10.1007/s00220-018-3168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3168-y

Navigation