Skip to main content
Log in

Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations: a New Universality Class

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

This paper investigates lozenge tilings of non-convex hexagonal regions and more specifically the asymptotic fluctuations of the tilings within and near the strip formed by opposite cuts in the regions, when the size of the regions tend to infinity, together with the cuts. It leads to a new kernel, which is expected to have universality properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Chhita, S., Johansson, K., van Moerbeke, P.: Tacnode GUE-minor processes and double Aztec diamonds. Probab. Theory Relat. Fields 162(1-2), 275–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., Johansson, K., van Moerbeke, P.: Double Aztec diamonds and the tacnode process. Adv. Math. 252, 518–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, M., Johansson, K., van Moerbeke, P.: Tilings of non-convex polygons, skew-young tableaux and determinantal processes. Comm. Math. Phys. arXiv:1609.06995 (2018)

  4. Adler, M., van Moerbeke, P.: Coupled GUE-minor processes. Int. Math. Res. Not. 21, 10987–11044 (2015). arXiv:1312.3859

    Article  MathSciNet  MATH  Google Scholar 

  5. Beffara, V., Chhita, S., Johansson, K.: Airy point process at the liquid-gas boundary. arXiv:1606.08653

  6. Betea, D., Bouttier, J., Nejjar, P., Vuletic, M.: The free boundary schur process and applications. arXiv:1704.05809

  7. Borodin, A., Gorin, V., Rains, E.M.: q-distributions on boxed plane partitions. Selecta Math. 16, 731–789 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A., Rains, E.M.: Eynard-mehta theorem, schur process, and their pfaffian analogs. J. Stat. Phys. 121(3–4), 291–317 (2005). arXiv:math-ph/0409059

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borodin, A.: Determinantal Point Processes. The Oxford Handbook of Random Matrix Theory, pp. 231–249. Oxford University Press, Oxford (2011)

    Google Scholar 

  10. Borodin, A., Duits, M.: Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincare (B) 47, 243–258 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2 + 1 dimensions. Comm. Math. Phys 325, 603–684 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bufetov, A., Knizel, A.: Asymptotics of random domino tilings of rectangular aztec diamonds. arXiv:1604.01491

  13. Chhita, S., Johansson, K.: Domino statistics of the two-periodic Aztec diamond. Adv. Math. 294, 37–149 (2016). arXiv:1606.08653

    Article  MathSciNet  MATH  Google Scholar 

  14. Defosseux, M.: Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. H. Poincar Probab. Statist. 46, 209–249 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Duits, M. On global fluctuations for non-colliding processes, arXiv:1510.08248

  16. Duse, E., Johansson, K., Metcalfe, A.: The cusp-airy process. Electron. J. Probab. 21(57). arXiv:1510.02057 (2016)

  17. Duse, E., Metcalfe, A.: Asymptotic geometry of discrete interlaced patterns: Part I. Int. J. Math. 26, 1550093 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duse, E., Metcalfe, A.: Asymptotic geometry of discrete interlaced patterns: Part II. arXiv:1507.00467

  19. Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33, 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johansson, K.: Edge Fluctuations and Limit Shapes. Harvard Lectures (2016)

  24. Johansson, K., Nordenstam, E.: Eigenvalues of GUE minors. Electron. J. Probab. 11, 1342–1371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gorin, V.E.: Bulk universality for random lozenge tilings near straight boundaries and for tensor products, to appear in communications in mathematical physics. arXiv:1603.02707

  26. Gorin, V.E., Petrov, L. Universality of local ststistics for noncolliding random walks. arXiv:1608.3243

  27. Gorin, V.E.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42, 180–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kac, M., Ward, J.C.: A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 88, 1332–1337 (1952)

    Article  ADS  MATH  Google Scholar 

  29. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  MATH  Google Scholar 

  30. Kasteleyn, P.W.: Graph theory and crystal physics. Graph theory and theoretical physics, pp. 43–110. Academic Press, London (1967)

    MATH  Google Scholar 

  31. Kaufman, B., Onsager, L.: Crystal statistics. III. Short-range order in a binary ising lattice. Phys. Rev. 76, 1244–1252 (1949)

    Article  ADS  MATH  Google Scholar 

  32. Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré, Probabilités 33, 591–618 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. Probab. Theory Relat. Fields 155(1-2), 303–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Novak, J.: Lozenge tilings and hurwitz numbers. J. Stat. Phys. 161, 509–517 (2015). arXiv:math/0309074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Okounkov, A., Reshetikhin, N.: The birth of a random matrix. Mosc. Math. J. 6(588), 553–566 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Petrov, L.: Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field. Ann. Probab. 43, 1–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petrov, L.: Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes. Probab. Theory Relat. Fields 160(3-4), 429–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Adler.

Additional information

The support of a Simons Foundation Grant # 278931 is gratefully acknowledged. M.A. thanks the Simons Center for Geometry and Physics for its hospitality.

The support of the Swedish Research Council (VR) and grant KAW 2010.0063 of the Knut and Alice Wallenberg Foundation are gratefully acknowledged.

The support of a Simons Foundation Grant # 280945 is gratefully acknowledged. PvM thanks the Simons Center for Geometry and Physics, Stony Brook, and the Kavli Institute of Physics, Santa Barbara, for their hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, M., Johansson, K. & van Moerbeke, P. Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations: a New Universality Class. Math Phys Anal Geom 21, 9 (2018). https://doi.org/10.1007/s11040-018-9265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-018-9265-5

Keywords

Mathematics Subject Classification (2010)

Navigation