Skip to main content
Log in

Quantum Ergodicity on Regular Graphs

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give three different proofs of the main result of Anantharaman and Le Masson (Duke Math J 164(4):723–765, 2015), establishing quantum ergodicity—a form of delocalization—for eigenfunctions of the laplacian on large regular graphs of fixed degree. These three proofs are much shorter than the original one, quite different from one another, and we feel that each of the four proofs sheds a different light on the problem. The goal of this exploration is to find a proof that could be adapted for other models of interest in mathematical physics, such as the Anderson model on large regular graphs, regular graphs with weighted edges, or possibly certain models of non-regular graphs. A source of optimism in this direction is that we are able to extend the last proof to the case of anisotropic random walks on large regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N., Le Masson E.: Quantum ergodicity on large regular graphs. Duke Math. J. 164(4), 723–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aomoto K.: Spectral theory on a free group and algebraic curves. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31(2), 297–318 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Bass H.: The Ihara–Selberg zeta function of a tree lattice. Int. J. Math. 3(6), 717–797 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjamini I., Schramm O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Berkolaiko G., Keating J.P., Smilansky U.: Quantum ergodicity for graphs related to interval maps. Commun. Math. Phys. 273(1), 137–159 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berkolaiko G., Keating J.P., Winn B.: No quantum ergodicity for star graphs. Commun. Math. Phys. 250(2), 259–285 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brammall M., Winn B.: Quantum ergodicity for quantum graphs without back-scattering. Ann. Henri. Poincaré. 17(6), 1353–1382 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brooks, S., Le Masson, É., Lindenstrauss, E.: Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. 2016(19), 6034–6064 (2016)

  9. Cowling M., Setti A.G.: The range of the Helgason–Fourier transformation on homogeneous trees. Bull. Aust. Math. Soc. 59(2), 237–246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102(3), 497–502 (1985)

  11. Colin de Verdière, Y.: Semi-classical measures on quantum graphs and the gauss map of the determinant manifold. Ann. H. Poincaré, to appear (2013)

  12. Elon, Y.: Eigenvectors of the discrete Laplacian on regular graphs—a statistical approach. J. Phys. A 41(43):435203, 17 (2008)

  13. Figà-Talamanca A., Steger T.: Harmonic analysis for anisotropic random walks on homogeneous trees. Mem. Am. Math. Soc. 110(531), xii+68 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Froese R., Hasler D., Spitzer W.: Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J. Funct. Anal. 230(1), 184–221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gnutzmann S., Keating J.P., Piotet F.: Eigenfunction statistics on quantum graphs. Ann. Phys. 325(12), 2595–2640 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gross J.L.: Every connected regular graph of even degree is a Schreier coset graph. J. Combin. Theory Ser. B 22(3), 227–232 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Keating J.P., Marklof J., Winn B.: Value distribution of the eigenfunctions and spectral determinants of quantum star graphs. Commun. Math. Phys. 241(2-3), 421–452 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kesten H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lubetzky E., Peres Y.: Cutoff on all Ramanujan graphs. Geom. Funct. Anal. 26, 1190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubotzky A., Phillips R., Sarnak P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. McKay B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29(6(180), 181–182 (1974)

  23. Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Anantharaman.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantharaman, N. Quantum Ergodicity on Regular Graphs. Commun. Math. Phys. 353, 633–690 (2017). https://doi.org/10.1007/s00220-017-2879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2879-9

Mathematics Subject Classification

Navigation