Skip to main content
Log in

Discrete Solitary Waves in Systems with Nonlocal Interactions and the Peierls–Nabarro Barrier

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a class of discrete focusing nonlinear Schrödinger equations (DNLS) with general nonlocal interactions. We prove the existence of onsite and offsite discrete solitary waves, which bifurcate from the trivial solution at the endpoint frequency of the continuous spectrum of linear dispersive waves. We also prove exponential smallness, in the frequency-distance to the bifurcation point, of the Peierls–Nabarro energy barrier (PNB), as measured by the difference in Hamiltonian or mass functionals evaluated on the onsite and offsite states. These results extend those of the authors for the case of nearest neighbor interactions to a large class of nonlocal short-range and long-range interactions. The appearance of distinct onsite and offsite states is a consequence of the breaking of continuous spatial translation invariance. The PNB plays a role in the dynamics of energy transport in such nonlinear Hamiltonian lattice systems.

Our class of nonlocal interactions is defined in terms of coupling coefficients, J m , where \({m\in\mathbb{Z}}\) is the lattice site index, with \({J_m\simeq m^{-1-2s}, s\in[1,\infty)}\) and \({J_m\sim e^{-\gamma|m|},\ s=\infty,\ \gamma > 0,}\) (Kac–Baker). For \({s\ge1}\), the bifurcation is seeded by solutions of the (effective/homogenized) cubic focusing nonlinear Schrödinger equation (NLS). However, for \({1/4 < s < 1}\), the bifurcation is controlled by the fractional nonlinear Schrödinger equation, FNLS, with \({(-\Delta)^s}\) replacing \({-\Delta}\). The proof is based on a Lyapunov–Schmidt reduction strategy applied to a momentum space formulation. The PN barrier bounds require appropriate uniform decay estimates for the discrete Fourier transform of DNLS discrete solitary waves. A key role is also played by non-degeneracy of the ground state of FNLS, recently proved by Frank, Lenzmann and Silvestrie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceves A.B., De Angelis C., Luther G.G., Rubenchik A.M.: Modulational instability of continuous waves and one-dimensional temporal solitons in fiber arrays. Opt. Lett. 19, 1186–1188 (1994)

    Article  ADS  Google Scholar 

  2. Aceves A.B., De Angelis C., Rubenchik A.M., Turitsyn S.K.: Multidimensional solitons in fiber arrays. Opt. Lett. 19, 329–331 (1994)

    Article  ADS  Google Scholar 

  3. Baker, G.A. Jr.: One-dimensional order-disorder model which approaches a second-order phase transition. Phys. Rev. 122, 1477 (1961)

  4. Barker, A.S. Jr., Sievers, A.J.: Optical studies of the vibrational properties of disordered solids. Rev. Mod. Phys. 47(Suppl. 2) (1975)

  5. Benjamin T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–562 (1967)

    Article  ADS  MATH  Google Scholar 

  6. Bona J., Li Y.: Decay and analyticity of solitary waves. J. Math. Pures Appl. 76, 377–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davydov A.S.: Theory of Molecular Excitons. Plenum Press, New York (1971)

    Book  Google Scholar 

  8. Davydov A.S., Kislukha N.I.: Solitary excitons in one-dimensional molecular chains. Phys. Status Solidi (b) 59, 465–470 (1973)

    Article  ADS  Google Scholar 

  9. Edwards H.M.: Riemann’s Zeta Function. Dover Books on Mathematics. Dover Publications, New York (2001)

    Google Scholar 

  10. Eilbeck J.C., Lomdahl P.S., Scott A.C.: The discrete self-trapping equation. Phys. D 16, 318–338 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisenberg H.S., Silberberg Y., Morandotti R., Boyd A., Aitchison J.S.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    Article  ADS  Google Scholar 

  12. Eisenberg H.S., Silberberg Y., Morandotti R., Boyd A., Aitchison J.S.: Dynamics of discrete solitons in optical waveguide arrays. Phys. Rev. Let. 83, 2726–2729 (1999)

    Article  ADS  Google Scholar 

  13. Frank, R., Lenzmann, E.: On ground states for the l 2-critical boson star equation (2010). arXiv:0910.2721

  14. Frank R., Lenzmann E.: Uniqueness and nondegeneracy of ground states \({(- \delta )^s q + q - q^{\alpha + 1} = 0}\) in \({\mathbb{R}}\). Acta. Math. 210, 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  15. Frank, R., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)

  16. Fröhlich J., Lenzmann E.: Blowup for nonlinear wave equations describing boson stars. Commun. Pure Appl. Math. 60, 1691–1705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaididei Y., Mingaleev S., Christiansen P., Rasmussen K.: Effect of nonlocal dispersion on self-interacting excitations. Phys. Lett. A 222, 152–156 (1996)

    Article  ADS  Google Scholar 

  18. Gaididei Y., Mingaleev S., Christiansen P., Rasmussen K.: Effect of nonlocal dispersion on self-trapping excitations. Phys. Rev. E 55, 6141–6150 (1997)

    Article  ADS  Google Scholar 

  19. Havil J.: Gamma: Exploring Euler’s Constant. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  20. Hennig H., Dorignac J., Campbell D.K.: Transfer of Bose–Einstein condensates through discrete breathers in an optical lattice. Phys. Rev. A 82, 053604–053612 (2010)

    Article  ADS  Google Scholar 

  21. Hong, Y., Sire, Y.: A new class of traveling solitons for cubic fractional nonlinear schrodinger equations (2015). arXiv:1501.01415

  22. Jenkinson, M.: Bifurcation of On-site and Off-site Solitary Waves of Discrete Nonlinear Schrödinger Type Equations. Ph.D. thesis, Columbia University (2015)

  23. Jenkinson M., Weinstein M.I.: On-site and off-site bound states of the discrete nonlinear schrödinger equation and the peierls-nabarro barrier. Nonlinearity 29, 27–86 (2015)

    Article  ADS  MATH  Google Scholar 

  24. Jenkinson, M., Weinstein, M.I.: Discrete solitary waves in systems with nonlocal interactions and the peierls-nabarro barrier (2016) (preprint). arXiv:1601.04598v1

  25. Kac M., Helfand E.: Study of several lattice systems with long-range forces. J. Math. Phys. 4, 1078–1088 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kevrekidis, P.: The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, vol 232. Springer Tracts in Modern Physics. Springer, Berlin (2009)

  27. Kevrekidis P.G., Gaididei Y.B., Bishop A.R., Saxena A.: Effects of competing short- and long-range dispersive interactions on discrete breathers. Phys. Rev. E 64, 066606 (2001)

    Article  ADS  Google Scholar 

  28. Kevrekidis P., Weinstein M.I.: Dynamics of lattice kinks. Phys. D 142, 113–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirkpatrick K., Lenzmann E., Staffilani G.: On the continuum limit for discrete nls with long-range lattice interactions. Commun. Math. Phys. 317, 563–591 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Krieger J., Lenzmann E., Raphaël P.: Nondispersive solutions to the l 2-critical half-wave equation. Arch. Rat. Mech. Anal. 209, 61–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kwong M.K.: Uniqueness of positive solutions of \({-\delta u + u = u^p}\) in \({\mathbb{R}^n}\). Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  32. Laskin N.: Fractional schrödinger equation. Phys. Rev. E 66, 056108–056125 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lieb E.H., Yau H.-T.: The chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. MacKay R., Schneider G., Pelinovsky D.: Justification of the lattice equation for a nonlinear elliptic problem with a periodic potential. Commun. Math. Phys. 284, 803–831 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Mingaleev S., Christiansen P., Gaididei Y., Johannson M., Rasmussen K.: Models for energy and charge transport and storage in biomolecules. J. Biol. Phys. 25, 41–63 (1999)

    Article  Google Scholar 

  36. Naether U., Vicencio R.A.: Mobility of high-power solitons in saturable nonlinear photonic lattices. Opt. Lett. 36, 1467–1469 (2011)

    Article  ADS  Google Scholar 

  37. Nirenberg, L.: Topics in Nonlinear Functional Analysis, vol 6. Courant Institute Lecture NotesAmerican Mathematical Society, Providence, Rhode Island (2001)

  38. Ono H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082–1091 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Oxtoby O.F., Barashenkov I.V.: Moving solitons in the discrete nonlinear schrödinger equation. Phys. Rev. E 76, 036603 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. Pelinovsky D., Schneider G.: Bounds on the tight-binding approximation for the gross-pitaevskii equation with a periodic potential. J. Differ. Equ. 248, 837–849 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Peyrard M., Kruskal M.D.: Kink dynamics in the highly discrete sine-gordon system. Phys. D 14, 88–102 (1984)

    Article  MathSciNet  Google Scholar 

  42. Riordan J.: Combinatorial Identities. Wiley, New York (1968)

    MATH  Google Scholar 

  43. Ros-Oton X., Serra J.: The pohozaev identity for the fractional laplacian. Arch. Ration. Mech. Anal. 213, 587–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smerzi A., Trombettoni A., Kevrekidis P.G., Bishop A.R.: Dynamical superfluid-insulator transition in a chain of weakly coupled bose-einstein condensates. Phys. Rev. Lett. 89, 175504–175508 (2002)

    Article  Google Scholar 

  45. Soffer A., Weinstein M.I.: Resonances, radiation damping and instability in hamiltonian nonlinear wave equations. Invent. Math. 136, 9–74 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Soffer A., Weinstein M.I.: Theory of nonlinear dispersive waves and selection of the ground state. Phys. Rev. Lett. 95, 213905 (2015)

    Article  ADS  Google Scholar 

  47. Soffer A., Weinstein M.I.: Selection of the ground state for nonlinear schrödinger equations. Rev. Math. Phys. 16, 977–1071 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Strauss W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 144–162 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, vol 139. Series in Mathematical Sciences. Springer, New York (1999)

  50. Takeno S., Kisoda K., Sievers A.J.: Intrinsic localized vibrational modes in anharmonic crystals. Prog. Theor. Phys. 94, 242–269 (1988)

    Article  Google Scholar 

  51. Tarasov V.E.: Continuous limit of discrete systems with long-range interaction. J. Phys. A 39, 14895–14910 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Tarasov V.E., Zaslavsky G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11, 885–989 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Weinstein M.I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Equ. 12, 1133–1173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Weinstein M.I.: Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12, 673–691 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Weinstein, M.I.: Localized states and dynamics in the nonlinear Schroedinger/Gross-Pitaevskii equation. In: Jones, C.K.R.T., Sandstede, B., Young, L.-S. (eds.) Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems (ch. 2), vol. 3. Springer, Berlin, pp. 41–79 (2015)

  56. Weinstein M.I., Yeary B.: Excitation and dynamics of pulses in coupled fiber arrays. Phys. Lett. A 222, 157–162 (1996)

    Article  ADS  Google Scholar 

  57. Wood, D.C.: The computation of polylogarithms, Tech. Report 15-92*, University of Kent, Computing Laboratory, University of Kent, Canterbury (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Weinstein.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkinson, M., Weinstein, M.I. Discrete Solitary Waves in Systems with Nonlocal Interactions and the Peierls–Nabarro Barrier. Commun. Math. Phys. 351, 45–94 (2017). https://doi.org/10.1007/s00220-017-2839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2839-4

Navigation