Skip to main content
Log in

The Asymptotics of Quantum Max-Flow Min-Cut

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantum max-flow min-cut conjecture relates the rank of a tensor network to the minimum cut in the case that all tensors in the network are identical in Calegari et al. (J Am Math Soc 23(1):107–188, 2010). This conjecture was shown to be false in Cui et al. (J Math Phys 57:062206, 2016) by an explicit counter-example. Here, we show that the conjecture is almost true, in that the ratio of the quantum max-flow to the quantum min-cut converges to 1 as the dimension N of the degrees of freedom on the edges of the network tends to infinity. The proof is based on estimating moments of the singular values of the network. We introduce a generalization of “rainbow diagrams” to tensor networks to estimate the dominant diagrams. A direct comparison of second and fourth moments lower bounds the ratio of the quantum max-flow to the quantum min-cut by a constant. To show the tighter bound that the ratio tends to 1, we consider higher moments. In addition, we show that the limiting moments as N → ∞ agree with that in a different ensemble where tensors in the network are chosen independently; this is used to show that the distributions of singular values in the two different ensembles weakly converge to the same limiting distribution. We present also a numerical study of one particular tensor network, which shows a surprising dependence of the rank deficit on N mod 4 and suggests further conjecture on the limiting behavior of the rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calegari D., Freedman M., Walker K.: Positivity of the universal pairing in 3 dimensions. J. Am. Math. Soc. 23(1), 107–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cui, S.X., Freedman, M.H., Sattath, O., Stong, R., Minton, G.: Quantum max-flow/min-cut. J. Math. Phys. 57, 062206 (2016). arXiv:1508.04644

  3. Isserlis L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)

    Article  Google Scholar 

  4. Wick G.C.: The evaluation of the collision matrix. Phys. Rev. 80, 268–272 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Collins, B., Nechita, I.: Random matrix techniques in quantum information theory. J. Math. Phys. 57, 015215 (2016). arXiv:1509.04689

  6. Zee A.: Quantum Field Theory in a Nutshell, Second Edition, pp. 396–400. Princeton University Press Princeton, NJ (2010)

    Google Scholar 

  7. Feinberg J.: Non-Hermitean Random Matrix Theory: summation of Planar Diagrams, the Single-Ring” Theorem and the Disk-Annulus Phase Transition. J. Phys. A 39, 10029 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ambainis A., Harrow A.W., Hastings M.B.: Random tensor theory: extending random matrix theory to random product states. Commun. Math. Phys. 310, 25 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Voiculescu, D.: Free probability theory: random matrices and von Neumann algebras. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, pp. 227–241. (Zurich, 1994). Birkhuser, Basel (1995)

  10. Shuryak E.V., Verbaarschot J.J.M.: Random matrix theory and spectral sum rules for the Dirac operator in QCD. Nucl. Phys. A 560, 306 (1993)

    Article  ADS  Google Scholar 

  11. Verbaarschot J.J.M.: Spectrum of the QCD Dirac operator and chiral random matrix theory. Phys. Rev. Lett. 72, 2531 (1994)

    Article  ADS  Google Scholar 

  12. Verbaarschot J.J.M.: Spectral sum rules and Selberg’s integral formula. Phys. Lett. B 329, 351 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Brezin E., Itzykson C., Parisi G., Zuber J.B.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Elias P., Feinstein A., Shannon C.E.: A note on the maximum flow through a network. Inf. Theory IRE Trans. 2(4), 117–119 (1956)

    Article  Google Scholar 

  15. Ford L.R., Fulkerson D.R.: Maximal flow through a network. Can. J. Math. 8(3), 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Hastings.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastings, M.B. The Asymptotics of Quantum Max-Flow Min-Cut. Commun. Math. Phys. 351, 387–418 (2017). https://doi.org/10.1007/s00220-016-2791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2791-8

Navigation