Skip to main content
Log in

Stationary Random Metrics on Hierarchical Graphs Via \({(\min,+)}\)-type Recursive Distributional Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law \({m}\)). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law \({m}\) . In other words, the stationary random metric is the solution of a distributional equation. When the measure m has continuous positive density on \({\mathbf{R}_{+}}\), the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when m is log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addario-Berry L., Reed B.: Minima in branching random walks. Ann. Probab. 37(3), 1044–1079 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aïdékon E.: Convergence in law of the minimum of a branching random walk. Ann. Probab. 41(3A), 1362–1426 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldous D.J., Bandyopadhyay A.: A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15(2), 1047–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barral J., Jin X., Rhodes R., Vargas V.: Gaussian multiplicative chaos and kpz duality. Commun. Math. Phys. 323(2), 451–485 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Barral J., Kupiainen A., Nikula M., Saksman E., Webb C.: Critical mandelbrot cascades. Commun. Math. Phys. 325(2), 685–711 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Benjamini, I.: Euclidean vs. Graph Metric, Erdös Centennial, Bolyai Society Mathematical Studies, vol. 25, pp. 35–57. Springer, New York (2013)

  7. Benjamini I., Schramm O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289(2), 653–662 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Biggins J.D.: The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8(3), 446–459 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bramson M., Zeitouni O.: Tightness for a family of recursion equations. Ann. Probab. 37(2), 615–653 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burago D., Burago Yu., Ivanov S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. AMS, Providence (2001)

    MATH  Google Scholar 

  11. David F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere (2014, arXiv preprint). arXiv:1410.7318

  13. Distler J., Kawai H.: Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B 321, 509–517 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dudley R.M.: Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563–1572 (1968)

    MATH  MathSciNet  Google Scholar 

  15. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees (2014, arXiv preprint). arXiv:1409.7055

  16. Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Duplantier B., Rhodes R., Sheffield S., Vargas V.: Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun. Math. Phys. 330(1), 283–330 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Durrett R., Liggett T.M.: Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 64(3), 275–301 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Erbin, H.: Notes on 2d quantum gravity and liouville theory (2014). http://www.lpthe.jussieu.fr/~erbin/files/liouville_theory.pdf

  20. Garban, C.: Quantum gravity and the kpz formula [after duplantier-sheffield]. Sém. Bourbaki, 64e année 1052 (2011–2012)

  21. Garban, C., Rhodes, R., Vargas, V.: Liouville brownian motion (2013, arXiv preprint). arXiv:1301.2876

  22. Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory, Recent direction in particle theory. In: Proceedings of the 1992 TASI. World Scientific (1993)

  23. Hall P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935)

    MATH  Google Scholar 

  24. Hambly B.M., Kumagai T.: Di usion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Commun. Math. Phys. 295, 29–69 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hammersley J.M.: Postulates for subadditive processes. Ann. Probab. 2(4), 652–680 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MATH  MathSciNet  Google Scholar 

  27. Kahane J.-P., Peyrière J.: Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22(2), 131–145 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kamae T., Krengel U., O’Brien G.L.: Stochastic inequalities on partially ordered spaces. Ann. Probab. 5(6), 899–912 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kingman J.F.C.: The first birth problem for an age-dependent branching process. Ann. Probab. 3(5), 790–801 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D quantum gravity. Modern Phys. Lett. A 3(8), 819–826 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liggett T.M.: An improved subadditive ergodic theorem. Ann. Probab. 13(4), 1279–1285 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Miller, J., Sheffield, S.: Quantum Loewner evolution. Duke Math. J. (to appear)

  33. Moore E.F., Shannon C.E.: Reliable circuits using less reliable relays, I. J. Franklin Inst. 262, 191–208 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Modern Phys. A 19, 2771–2930 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Polyakov A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  36. Polyakov A.M.: Gauge Fields and Strings. Harwood Academic Publishers, New York (1987)

    Google Scholar 

  37. Rhodes R., Vargas V.: Kpz formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rhodes R., Vargas V.: Gaussian multiplicative chaos and applications: a review. Prob. Surveys 11, 315–392 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Strassen V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  41. Teschner, J.: Liouville theory revisited. Quantum Grav. 18(23) (2001)

  42. Zeitouni, O.: Branching random walks and gaussian fields (2012). http://www-users.math.umn.edu/~zeitouni/technion/pdf/notesBRW.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Triestino.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khristoforov, M., Kleptsyn, V. & Triestino, M. Stationary Random Metrics on Hierarchical Graphs Via \({(\min,+)}\)-type Recursive Distributional Equations. Commun. Math. Phys. 345, 1–76 (2016). https://doi.org/10.1007/s00220-016-2650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2650-7

Navigation