Communications in Mathematical Physics

, Volume 345, Issue 1, pp 1–76 | Cite as

Stationary Random Metrics on Hierarchical Graphs Via \({(\min,+)}\)-type Recursive Distributional Equations

  • Mikhail Khristoforov
  • Victor Kleptsyn
  • Michele Triestino
Article
  • 76 Downloads

Abstract

This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law \({m}\)). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law \({m}\) . In other words, the stationary random metric is the solution of a distributional equation. When the measure m has continuous positive density on \({\mathbf{R}_{+}}\), the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when m is log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addario-Berry L., Reed B.: Minima in branching random walks. Ann. Probab. 37(3), 1044–1079 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aïdékon E.: Convergence in law of the minimum of a branching random walk. Ann. Probab. 41(3A), 1362–1426 (2013)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Aldous D.J., Bandyopadhyay A.: A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15(2), 1047–1110 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Barral J., Jin X., Rhodes R., Vargas V.: Gaussian multiplicative chaos and kpz duality. Commun. Math. Phys. 323(2), 451–485 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Barral J., Kupiainen A., Nikula M., Saksman E., Webb C.: Critical mandelbrot cascades. Commun. Math. Phys. 325(2), 685–711 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Benjamini, I.: Euclidean vs. Graph Metric, Erdös Centennial, Bolyai Society Mathematical Studies, vol. 25, pp. 35–57. Springer, New York (2013)Google Scholar
  7. 7.
    Benjamini I., Schramm O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289(2), 653–662 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Biggins J.D.: The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8(3), 446–459 (1976)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bramson M., Zeitouni O.: Tightness for a family of recursion equations. Ann. Probab. 37(2), 615–653 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Burago D., Burago Yu., Ivanov S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. AMS, Providence (2001)MATHGoogle Scholar
  11. 11.
    David F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere (2014, arXiv preprint). arXiv:1410.7318
  13. 13.
    Distler J., Kawai H.: Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B 321, 509–517 (1989)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dudley R.M.: Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563–1572 (1968)MATHMathSciNetGoogle Scholar
  15. 15.
    Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees (2014, arXiv preprint). arXiv:1409.7055
  16. 16.
    Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Duplantier B., Rhodes R., Sheffield S., Vargas V.: Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun. Math. Phys. 330(1), 283–330 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Durrett R., Liggett T.M.: Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 64(3), 275–301 (1983)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Erbin, H.: Notes on 2d quantum gravity and liouville theory (2014). http://www.lpthe.jussieu.fr/~erbin/files/liouville_theory.pdf
  20. 20.
    Garban, C.: Quantum gravity and the kpz formula [after duplantier-sheffield]. Sém. Bourbaki, 64e année 1052 (2011–2012)Google Scholar
  21. 21.
    Garban, C., Rhodes, R., Vargas, V.: Liouville brownian motion (2013, arXiv preprint). arXiv:1301.2876
  22. 22.
    Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory, Recent direction in particle theory. In: Proceedings of the 1992 TASI. World Scientific (1993)Google Scholar
  23. 23.
    Hall P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935)MATHGoogle Scholar
  24. 24.
    Hambly B.M., Kumagai T.: Di usion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Commun. Math. Phys. 295, 29–69 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hammersley J.M.: Postulates for subadditive processes. Ann. Probab. 2(4), 652–680 (1974)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)MATHMathSciNetGoogle Scholar
  27. 27.
    Kahane J.-P., Peyrière J.: Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22(2), 131–145 (1976)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Kamae T., Krengel U., O’Brien G.L.: Stochastic inequalities on partially ordered spaces. Ann. Probab. 5(6), 899–912 (1977)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Kingman J.F.C.: The first birth problem for an age-dependent branching process. Ann. Probab. 3(5), 790–801 (1975)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D quantum gravity. Modern Phys. Lett. A 3(8), 819–826 (1988)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Liggett T.M.: An improved subadditive ergodic theorem. Ann. Probab. 13(4), 1279–1285 (1985)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Miller, J., Sheffield, S.: Quantum Loewner evolution. Duke Math. J. (to appear)Google Scholar
  33. 33.
    Moore E.F., Shannon C.E.: Reliable circuits using less reliable relays, I. J. Franklin Inst. 262, 191–208 (1956)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Nakayama Y.: Liouville field theory: a decade after the revolution. Int. J. Modern Phys. A 19, 2771–2930 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Polyakov A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Polyakov A.M.: Gauge Fields and Strings. Harwood Academic Publishers, New York (1987)Google Scholar
  37. 37.
    Rhodes R., Vargas V.: Kpz formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358 (2011)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Rhodes R., Vargas V.: Gaussian multiplicative chaos and applications: a review. Prob. Surveys 11, 315–392 (2014)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Strassen V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Teschner, J.: Liouville theory revisited. Quantum Grav. 18(23) (2001)Google Scholar
  42. 42.
    Zeitouni, O.: Branching random walks and gaussian fields (2012). http://www-users.math.umn.edu/~zeitouni/technion/pdf/notesBRW.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mikhail Khristoforov
    • 1
  • Victor Kleptsyn
    • 2
  • Michele Triestino
    • 3
  1. 1.Université de GenèveGenevaSwitzerland
  2. 2.CNRS, Institut de Recherches Mathématiques de RennesRennesFrance
  3. 3.Departamento de Matemática AplicadaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations