Skip to main content
Log in

The Positive Mass Theorem for Manifolds with Distributional Curvature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate and prove a positive mass theorem for n-dimensional spin manifolds whose metrics have only the Sobolev regularity \({C^0 \cap W_{\rm loc}^{1,n}}\). At this level of regularity, the curvature of the metric is defined in the distributional sense only, and we propose here a (generalized) notion of ADM mass for such a metric. Our main theorem establishes that if the manifold is asymptotically flat and has non-negative scalar curvature distribution, then its (generalized) ADM mass is well-defined and non-negative, and vanishes only if the manifold is isometric to Euclidian space. Prior applications of Witten’s spinor method by Lee and Parker and by Bartnik required the much stronger regularity \({W_{\rm loc}^{2,p}}\) with p > n. Our proof is a generalization of Witten’s arguments, in which we must treat the Dirac operator and its associated Lichnerowicz-Weitzenböck identity in the distributional sense and cope with certain averages of first-order derivatives of the metric over annuli that approach infinity. Finally, we observe that our arguments are not specific to scalar curvature and also allow us to establish a “universal” positive mass theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnowitt A., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartnik R., Chruściel P.: Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579, 13–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Geroch R.P., Traschen J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017–1031 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  6. Grant, J.D.E., Tassotti, N.: A positive mass theorem for low-regularity metrics. arXiv:1205.1302

  7. Herzlich, M.: Universal positive mass theorems. arXiv:1401.6009

  8. Homma Y.: Bochner-Weitzenbock formulas and curvature actions on Riemannian manifolds. Trans. Am. Math. Soc. 358, 87–114 (2005)

    Article  MathSciNet  Google Scholar 

  9. Lawson, H.B., Michelsohn, M.L.: Spin geometry. Princeton Math. Series, vol. 38. Princeton Univ. Press, New Jersey (1989)

  10. Lee D.A.: A positive mass theorem for Lipschitz metrics with small singular sets. Proc. Am. Math. Soc. 141, 3997–4004 (2013)

    Article  Google Scholar 

  11. Lee, D.A., Sormani, C.: Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds. J. Reine Angewandte Math (Crelle’s Journal) (686) (2014)

  12. Lee D.A., Sormani C.: Near-equality of the Penrose inequality for rotationally symmetric Riemannian manifolds. Ann. Henri Poincaré 13, 1537–1556 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. LeFloch, P.G.: Weakly regular Einstein spacetimes (in preparation)

  14. LeFloch P.G., Mardare C.: Definition and weak stability of spacetimes with distributional curvature. Portugal Math. 64, 535–573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. LeFloch P.G., Rendall A.D.: A global foliation of Einstein–Euler spacetimes with Gowdy-symmetry on T 3. Arch. Rational Mech. Anal. 201, 841–870 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. LeFloch, P.G., Sormani, C.: The nonlinear stability of rotationally symmetric spaces with low regularity. arXiv:1401.6192

  17. LeFloch P.G., Stewart J.M.: The characteristic initial value problem for plane–symmetric spacetimes with weak regularity. Class. Quantum Grav. 28, 145019–145035 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lohkamp, J.: The higher dimensional positive mass theorem. arXiv:math/0608795

  19. McFeron D., Székelyhidi G.: On the positive mass theorem for manifolds with corners. Commun. Math. Phys. 313, 425–443 (2012)

    Article  ADS  MATH  Google Scholar 

  20. Miao P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Parker T., Taubes C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Schoen R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. Lecture Notes Math. 1365, 120–154 (1989)

    Article  MathSciNet  Google Scholar 

  23. Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Schwartz, L.: Théorie des distributions, vol. I. Hermann et Cie Editors, Paris (1950–1951)

  25. Semmelmann U., Weingart G.: The Weitzenböck machine. Compositio Math. 146, 507–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi Y., Tam L.-T.: Positive mass theorem and the boundary behaviors of compact manifolds with non-negative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Wald R.M.: General relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  28. Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.A., LeFloch, P.G. The Positive Mass Theorem for Manifolds with Distributional Curvature. Commun. Math. Phys. 339, 99–120 (2015). https://doi.org/10.1007/s00220-015-2414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2414-9

Keywords

Navigation