Skip to main content
Log in

A Global Foliation of Einstein–Euler Spacetimes with Gowdy-Symmetry on T 3

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the initial value problem for the Einstein–Euler equations of general relativity under the assumption of Gowdy symmetry on T 3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein–Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréasson H.: Global foliations of matter spacetimes with Gowdy symmetry. Commun. Math. Phys. 206, 337–366 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andréasson H., Rendall A.D., Weaver M.: Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter. Commun. Partial Differ. Equ. 29, 237–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes A.P., LeFloch P.G., Schmidt B.G., Stewart J.M.: The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes. Class. Quantum Grav. 21, 5043–5074 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Berger B.K., Chruściel P.T., Isenberg J., Moncrief V.: Global foliations of vacuum spacetimes with T 2 isometry. Ann. Phys. 260, 117–148 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Berger B.K., Chruściel P.T., Moncrief V.: On asymptotically flat spacetimes with G 2-invariant Cauchy surfaces. Ann. Phys. 237, 322–354 (1995)

    Article  ADS  MATH  Google Scholar 

  6. Christodoulou D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chruściel P.T.: On spacetimes with U(1)×U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202, 100–150 (1990)

    Article  ADS  MATH  Google Scholar 

  8. Chruściel P.T., Isenberg J., Moncrief V.: Strong cosmic censorship in polarized Gowdy spacetimes. Class. Quantum Grav. 7, 1671–1680 (1990)

    Article  ADS  MATH  Google Scholar 

  9. Dafermos C.M. (2010) Hyperbolic Conservation Laws in Continuum Physics. Grundlehren Math. Wissenschaften Series 325, 3rd edn. Springer, New York

  10. Dafermos M., Rendall A.D.: Strong cosmic censorship for T 2-symmetric cosmological spacetimes with collisionless matter. Preprint. arXiv:gr-qc/0610075

  11. Eardley D., Moncrief V.: The global existence problem and cosmic censorship in general relativity. Gen. Relat. Grav. 13, 887–892 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Geroch R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Geroch R.: A method for generating new solutions of Einstein’s equations. II. J. Math. Phys. 13, 394–404 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gowdy R.: Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. 83, 203–241 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Groah J., Temple B.: Shock-wave solutions of the Einstein equations: existence and consistency by a locally inertial Glimm scheme. Mem. Am. Math. Soc. 172 (813) (2004)

  16. Hawking S.W., Penrose R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. A 314, 529–548 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Isenberg J., Moncrief V.: Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes. Ann. Phys. 99, 84–122 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Isenberg J., Weaver M.: On the area of the symmetry orbits in T 2 symmetric spacetimes. Class. Quantum Grav. 20, 3783–3796 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. LeFloch P.G.: Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich, Birkhäuser, 2002

  20. LeFloch P.G.: Compressible fluids in curved spacetimes. In preparation

  21. LeFloch P.G., Mardare C.: Definition and weak stability of spacetimes with distributional curvature. Port. Math. 64, 535–573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. LeFloch P.G., Stewart J.M.: Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry. Port. Math. 62, 349–370 (2005)

    MathSciNet  Google Scholar 

  23. LeFloch P.G., Stewart J.M.: The characteristic initial value problem for plane symmetric spacetimes with weak regularity. Class. Quantum Grav. (2011)

  24. Moncrief V.: Global properties of Gowdy spacetimes with \({T^3 \times \mathbb{R}}\) topology. Ann. Phys. 132, 87–107 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Penrose R.: Gravitational collapse and spacetime singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Rendall A.D.: Cosmic censorship and the Vlasov equation. Class. Quantum Grav. 9, 99–104 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rendall A.D.: Crushing singularities in spacetimes with spherical, plane, and hyperbolic symmetry. Class. Quantum Grav. 12, 1517–1533 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rendall A.D.: Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry. Commun. Math. Phys. 189, 145–164 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Rendall A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  30. Rendall A.D., Ståhl F.: Shock waves in plane symmetric spacetimes. Commun. Partial Differ. Equ. 33, 2020–2039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ringström H.: Curvature blow-up on a dense subset of the singularity in T 3-Gowdy. J. Hyper. Differ. Equ. 2, 547–564 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ringström H.: Strong cosmic censorship in T 3-Gowdy spacetimes. Ann. Math. 170, 1181–1240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smulevici J.: Strong cosmic censorship for T 2-symmetric spacetimes with positive cosmological constant and matter. Ann. Henri Poincaré 9, 1425–1453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wainwright J., Ellis G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  35. Weaver M.: On the area of the symmetry orbits in T 2-symmetric spacetimes with Vlasov matter. Class. Quantum Grav. 21, 1079–1098 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Additional information

Communicated by C. M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeFloch, P.G., Rendall, A.D. A Global Foliation of Einstein–Euler Spacetimes with Gowdy-Symmetry on T 3 . Arch Rational Mech Anal 201, 841–870 (2011). https://doi.org/10.1007/s00205-011-0425-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0425-z

Keywords

Navigation