Skip to main content
Log in

Ergodicity of the Spin-Boson Model for Arbitrary Coupling Strength

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the spin-boson system is ergodic for arbitrary strengths of the coupling between the spin and the boson bath, provided the spin tunneling matrix element is small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein W., Boutet de Monvel A., Georgescu V.: C 0-Groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  2. Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9, 165–209 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Araki H., Woods E.: Representations of the canonical commutation relations describing a nonrelativistic infinite free bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bach V., Fröhlich J., Sigal I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137, 299–395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bach V., Fröhlich J., Sigal I.M.: Return to equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bach V., Fröhlich J., Sigal I.M., Soffer A.: Positive commutators and the spectrum of Pauli-Fierz Hamiltonian of atoms and molecules. Commun. Math. Phys. 207(3), 557–587 (1999)

    Article  ADS  MATH  Google Scholar 

  7. Boutet de Monvel A., Sahbani J.: On the spectral properties of the Spin-Boson Hamiltonians. Lett. Math. Phys. 44, 23–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 1,2, Texts and Monographs in Physics. Springer, Berlin (1987)

    Book  Google Scholar 

  9. Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger Operators, Texts and Monographs in Physics. Springer, Berlin (1986)

    Google Scholar 

  10. Davies E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  11. Derezinski J., Jaksic V.: Spectral theory of Pauli-Fierz operators. J. Funct. Anal. 180, 243–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Derezinski J., Jaksic V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré 4, 739–793 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Derezinski J., Jaksic V., Pillet C.-A.: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15(5), 447–489 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Roeck W., Kupiainen A.: ‘Return to equilibrium’ for weakly coupled quantum systems: a simple polymer expansion. Commun. Math. Phys. 305(3), 797–826 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. De Roeck W., Kupiainen A.: Approach to ground state and time-independent photon bound for massless spin-boson models. Ann. Henri Poincaré 14(2), 253–311 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Faupin J., Møller J.S., Skibsted E.: Second order perturbation theory for embedded eigenvalues. Commun. Math. Phys. 306, 193–228 (2011)

    Article  ADS  MATH  Google Scholar 

  17. Fröhlich J., Merkli M.: Thermal ionization. Math. Phys. Anal. Geom. 7(3), 239–287 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fröhlich J., Merkli M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251, 235–262 (2004)

    Article  ADS  MATH  Google Scholar 

  19. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  20. Hislop P., Sigal I.M.: Introduction to Spectral Theory, Applied Mathematical Sciences, Volume 113. Springer, Berlin (1996)

    Book  Google Scholar 

  21. Hübner M., Spohn H.: Spectral properties of the spin-boson Hamiltonian. Ann. Inst. Henri Poincaré 62(3), 289–323 (1995)

    MATH  Google Scholar 

  22. Jaksic V., Pillet C.-A.: On a model for quantum friction. III. Ergodic properties of the spin-boson system. Commun. Math. Phys. 178(3), 627–651 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Jaksic V., Pillet C.-A.: A note on eigenvalues of Liouvilleans. J. Stat. Phys. 218, 937–941 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kato T.: Perturbation Theory for Linear Operators. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Volume 132. Springer, Berlin (1966)

    Google Scholar 

  25. Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A., Garg A., Zwerger W.: Dynamics of hte dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987)

    Article  ADS  Google Scholar 

  26. Merkli M.: Positive commutators in non-equilibrium quantum statistical mechanics. Commun. Math. Phys. 223, 327–362 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Merkli M., Sigal I.M., Berman G.P.: Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Møller J.S.: Fully coupled Pauli-Fierz systems at zero and positive temperature. J. Math. Phys. 55, 075203 (2014)

    Article  ADS  Google Scholar 

  29. Mourre E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys. 78, 391–408 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Simon B., Reed M.: Methods of Modern Mathematical Physics I, Functional Analysis, revised and enlarged edition. Academic Press, London (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Könenberg.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Könenberg, M., Merkli, M. & Song, H. Ergodicity of the Spin-Boson Model for Arbitrary Coupling Strength. Commun. Math. Phys. 336, 261–285 (2015). https://doi.org/10.1007/s00220-014-2242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2242-3

Keywords

Navigation