Skip to main content
Log in

A Solution Space for a System of Null-State Partial Differential Equations: Part 1

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is the first of four that completely and rigorously characterize a solution space \({{\mathcal{S}}_N}\) for a homogeneous system of 2N +  3 linear partial differential equations (PDEs) in 2N variables that arises in conformal field theory (CFT) and multiple Schramm–Löwner evolution (SLE\({_\kappa}\)). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O(n) models, at the statistical mechanical critical point. (SLE\({_\kappa}\) partition functions also satisfy these equations.) For such a lattice model in a polygon \({{\mathcal{P}}}\) with its 2N sides exhibiting a free/fixed side-alternating boundary condition \({\vartheta}\), this partition function is proportional to the CFT correlation function

$$\langle\psi_1^c(w_1)\psi_1^c(w_2)\dotsm\psi_1^c(w_{2N-1})\psi_1^c(w_{2N})\rangle^{{\mathcal{P}}}_\vartheta,$$

where the w i are the vertices of \({{\mathcal{P}}}\) and where \({\psi_1^c}\) is a one-leg corner operator. (Partition functions for “crossing events” in which clusters join the fixed sides of \({{\mathcal{P}}}\) in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider.

In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405.2747, 2014), we prove further CFT-related properties about these solutions, some useful for calculating cluster-crossing probabilities of critical lattice models in polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardy J.: Critical percolation in finite geometries. J. Phys. A Math. Gen. 25, L201–L206 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Di Francesco P., Mathieu R., Sénéchal D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  4. Henkel M.: Conformal Invariance and Critical Phenomena. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  5. Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    Article  ADS  Google Scholar 

  6. Simmons J.J.H., Kleban P.: Complete conformal field theory solution of a chiral six-point correlation function. J. Phys. A Math. Theor. 44, 315403 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Simmons J.J.H., Kleban P., Flores S.M., Ziff R.M.: Cluster densities at 2-D critical points in rectangular geometries. J. Phys. A Math. Theor. 44, 385002 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Flores, S.M., Simmons, J.J.H., Kleban, P., Ziff R.M.: Partition functions and crossing probabilities for critical systems inside polygons (in preparation)

  9. Gruzberg I.A.: Stochastic geometry of critical curves, Schramm–Löwner evolutions, and conformal field theory. J. Phys. A 39, 12601–12656 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A 40, 2165–2195 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cardy J.: Boundary conditions, fusion rules, and the Verlinde formula. Nucl. Phys. B 324, 581–596 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Langlands R., Pouliot P., Saint-Aubin Y.: Conformal invariance in two-dimensional percolation. Bull. Am. Math. Soc. 30, 1–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Morse P.M., Feshbach H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  14. Ziff R.M.: Effective boundary extrapolation length to account for finite-size effects in the percolation crossing function. Phys. Rev. E 54, 2547–2554 (1996)

    Article  ADS  Google Scholar 

  15. Langlands R.P., Pichet C., Pouliot P., Saint-Aubin Y.: On the universality of crossing probabilities in two-dimensional percolation. J. Stat. Phys. 67, 553–574 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Smirnov S.: Critical percolation in the plane. C. R. Acad. Sci. Paris Sr. I Math. 333, 239–244 (2001)

    Article  ADS  MATH  Google Scholar 

  17. Watts G.M.T.: A crossing probability for percolation in two dimensions. J. Phys. A 29, L363–L368 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Simmons J.J.H., Kleban P., Ziff R.M.: Percolation crossing formulas and conformal field theory. J. Phys. A 40, F771 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Simmons J.J.H., Kleban P., Ziff R.M.: Anchored critical percolation clusters and 2-D electrostatics. Phys. Rev. Lett. 97, 115702 (2006)

    Article  ADS  Google Scholar 

  20. Simmons, J.J.H., Kleban, P., Dahlberg, K., Ziff, R. M.: The density of critical percolation clusters touching the boundaries of strips and squares. J. Stat. Mech. P06012 (2007)

  21. Simmons, J.J.H., Kleban, P., Ziff, R.M.: Factorization of percolation density correlation functions for clusters touching the sides of a rectangle. J. Stat. Mech. P02067 (2009)

  22. Flores S.M., Kleban P., Ziff R.M.: Cluster pinch-point densities in polygons. J. Phys. A Math. Theor. 45, 505002 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wu F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  24. Fortuin C.M., Kasteleyn P.W.: On the random cluster model I. Introduction and relation to other models. Physica D 57, 536–564 (1972)

    MathSciNet  Google Scholar 

  25. Dubédat, J.: Sur le processus de Schramm–Löwner et la limite continue de la percolation critique plane. Ph.D. thesis, L’Université Paris (2004)

  26. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations II. Commun. Math. Phys. Preprint: arXiv:1404.0035 (2014, to appear)

  27. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations III. Commun. Math. Phys. Preprint: arXiv:1303.7182 (2013 to appear)

  28. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations IV. Commun. Math. Phys. Preprint: arXiv:1405.2747 (2014 to appear)

  29. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123, 1183–1218 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A Math. Theor. 46, 494015 (2013)

    Article  MathSciNet  Google Scholar 

  31. Dotsenko V.S., Fateev V.A. (1984) Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240:312–348

  32. Dotsenko, V.S., Fateev, V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge \({c \le 1}\). Nucl. Phys. B 251, 691–673 (1985)

  33. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)

    Book  MATH  Google Scholar 

  34. Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60, 1792–1847 (2007)

    Article  MATH  Google Scholar 

  35. Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Löwner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Graham, K.: On multiple Schramm–Löwner evolutions. J. Stat. Mech. P03008 (2007)

  37. Kozdron M.J., Lawler G.: The configurational measure on mutually avoiding SLE paths. Fields Inst. Commun. 50, 199–224 (2007)

    MathSciNet  Google Scholar 

  38. Sakai K.: Multiple Schramm–Löwner evolutions for conformal field theories with Lie algebra symmetries. Nucl. Phys. B 867, 429–447 (2013)

    Article  ADS  MATH  Google Scholar 

  39. Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161, 879–920 (2005)

    Article  MathSciNet  Google Scholar 

  40. Kager W., Nienhuis B., Kadanoff L.P.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Lawler G.: Conformally Invariant Processes in the Plane. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  42. Lawler G.: A self-avoiding walk. Duke Math. J. 47, 655–694 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lawler G., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Madra G., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  45. Lawler, G., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Lapidus, M.L., Frankenhuysen, M.V. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2. American Mathematical Society, Providence (2004)

  46. Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MATH  Google Scholar 

  47. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Probability and Statistical Physics in Two and More Dimensions. Clay Mathematics Proceedings, vol. 15, pp. 213–276 (2012)

  48. Schramm O., Sheffield S.: The harmonic explorer and its convergence to SLE4. Ann. Probab. 33, 2127–2148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grimmett G.: Percolation. Springer, New York (1989)

    MATH  Google Scholar 

  50. Weinrib A., Trugman S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993–2997 (1985)

    Article  ADS  Google Scholar 

  51. Bauer M., Bernard D.: Conformal field theories of stochastic Löwner evolutions. Commun. Math. Phys. 239, 493–521 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bers, L., Schechter, M.: Elliptic equations. In: Bers, L., John, F., Schechter, M. (eds.) Partial Differential Equations. American Mathematical Society, Providence (1964)

  53. Folland, G.: Fourier Analysis and its Applications. Wadsworth & Brooks/Cole Advanced Books and Software, Pacific Grove (1992)

  54. Di Francesco P., Golinelli O., Guitter E.: Meanders and the Temperley-Lieb algebra. Commun. Math. Phys. 186, 1–59 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Horn R., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  56. Gurarie V.: Logarithmic operators in conformal field theory. Nucl. Phys. B 410, 535–549 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Mathieu P., Ridout D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657:120–129 (2007)

  58. Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  59. Kytölä, K., Peltola, E.: Pure geometries of multiple SLEs (in preparation)

  60. Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group, Preprint. arXiv:1408.1384 (2014)

  61. Friedan D., Qiu Z., Shenker S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575–1578 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  62. Dotsenko V.S.: Critical behavior and associated conformal algebra of the Z3 Potts model. Nucl. Phys. B 235, 54–74 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  63. Saleur H., Bauer M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B 320, 591–624 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  64. Bauer, M., Bernard, D., Houdayer, J.: Dipolar stochastic Löwner evolutions. J. Stat. Mech. P03001 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Flores.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, S.M., Kleban, P. A Solution Space for a System of Null-State Partial Differential Equations: Part 1. Commun. Math. Phys. 333, 389–434 (2015). https://doi.org/10.1007/s00220-014-2189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2189-4

Keywords

Navigation