Skip to main content
Log in

Precise Evaluation of Leaked Information with Secure Randomness Extraction in the Presence of Quantum Attacker

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We treat secret key extraction when the eavesdropper has correlated quantum states. We propose quantum privacy amplification theorems different from Renner’s, which are based on quantum conditional Rényi entropy of order 1 + s. Using those theorems, we derive an exponential rate of decrease for leaked information and the asymptotic equivocation rate, which have not been derived hitherto in the quantum setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede R., Csiszár I.: Common randomness in information theory and cryptography part 1: Secret sharing. IEEE Trans. Inform. Theory 39(4), 1121–1132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Crepeau C., Maurer U.M.: Generalized privacy amplification. IEEE Trans. Inform. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Håstad J., Impagliazzo R., Levin L.A., Luby M.: A pseudorandom generator from any one-way function. SIAM J. Comput 28, 1364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Renner, R., Wolf, S.: Simple and Tight Bounds for Information Reconciliation and Privacy Amplification, ASIACRYPT 2005, Lecture Notes in Computer Science, vol. 3788: SIAM J. Comput. pp. 199–216 (2005)

  5. Hayashi M.: Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011)

    Article  Google Scholar 

  6. Renner, R.: Security of Quantum Key Distribution, Ph.D. thesis, Dipl. Phys. ETH, Switzerland (2005). arXiv:quantph/0512258

  7. Matsumoto, R., Hayashi, M.: Universal Strongly Secure Network Coding with Dependent and Non-Uniform Messages (2011). arXiv:1111.4174

  8. Hayashi, M.: Large deviation analysis for classical and quantum security via approximate smoothing (2012). arXiv:1202.0322. Accepted for IEEE Transactions on Information Theory

  9. Watanabe, S., Hayashi, M.: Non-Asymptotic Analysis of Privacy Amplification via Renyi Entropy and Inf-Spectral Entropy. In: 2013 IEEE International Symposium on Information Theory (ISIT 2013) Istanbul, Turkey, pp. 2715–2719. 7–12 July 2013

  10. Hayashi M.: Second-order asymptotics in fixed-length source coding and intrinsic randomness. IEEE Trans. Inf. Theory 54, 4619–4637 (2008)

    Article  Google Scholar 

  11. Tomamichel M., Hayashi M.: A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013)

    Article  MathSciNet  Google Scholar 

  12. Wyner A.D.: The wire-tap channel. Bell. Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csiszár I., Körner J.: Broadcast channels with confidential messages. IEEE Trans. Inform. Theory 24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marina, N., Yagi, H., Poor, H.V.: Improved Rate-Equivocation Regions for Secure Cooperative Communication. arXiv:1102.3500. In: Proceedings of the 2011 IEEE ISIT St. Petersburg, Russia, July 2011, pp. 2871–2875

  15. Shafee, S., Ulukus, S.: Achievable Rates in Gaussian MISO Channels with Secrecy Constraints. In: Proceedings of the 2007 IEEE ISIT, Nice, France, June. pp. 2466–2470 (2007)

  16. Xu, J., Chen, B.: An outer bound to the rate equivocation region of broadcast channels with two confidential messages. In: Proceedings of the Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. New Orleans, LA, USA, pp. 1–5, Nov–Dec 2008

  17. Liang Y., Poor H.V.: Multiple-access channels with confidential messages. IEEE Trans. Inform. Theory 54(3), 976–1002 (2008)

    Article  MathSciNet  Google Scholar 

  18. Oggier, F., Hassibi, B.: The secrecy capacity of the MIMO wiretap channel. In: Proceedings of the 2008 IEEE ISIT Toronto, Canada, pp. 524–528. July 2008

  19. Ozel, O., Ulukus, S.: Rate-equivocation region of cyclic shift symmetric wiretap channels. In: Proceedings of the 49th Annual Allerton Conf. Allerton House, Monticello, IL, USA, pp. 1120–1127 (2011)

  20. Andersson M., Rathi V., Thobaben R., Kliewer J., Skoglund M.: Nested polar codes for wiretap and relay channels. IEEE Commun. Lett. 14(8), 752–754 (2010)

    Article  Google Scholar 

  21. Hayashi, M., Matsumoto, R.: Universally attainable error and information exponents, and equivocation rate for the broadcast channels with confidential messages. In: Proceedings of the 49th Annual Allerton Conf. Allerton House, Monticello, IL, USA, pp. 439–444 (2011)

  22. Choo, L.-C., Ling, C., Wong, K.-K.: Achievable rates for lattice coded gaussian wiretap channels. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC), pp. 1–5. June 2011

  23. Rathi, V., Urbanke, R., Andersson, M., Skoglund, M.: Rate-equivocation optimal spatially coupled LDPC codes for the BEC wiretap channel. In: Proceedings of the 2011 IEEE ISIT Saint-Petersburg, Russia, pp. 2393–2397, Aug 2011)

  24. Fujii J.I., Kamei E.: Relative operator entropy in noncommutative information theory. Math. Japon. 34, 341–348 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Belavkin V.P., Staszewski P.: C*-algebraic generalization of relative entropy and entropy. Ann. Inst. Henri Poincaré, Sec. A 37, 51–58 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hayashi M.: Quantum Information: An Introduction. Springer, Berlin (2006)

    Google Scholar 

  28. Hayashi M.: Optimal sequence of POVMs in the sense of Stein’s lemma in quantum hypothesis. J. Phys. A: Math. Gen. 35, 10759–10773 (2002)

    Article  ADS  MATH  Google Scholar 

  29. Carter L., Wegman M.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krawczyk, H.: LFSR-based hashing and authentication. Advances in Cryptology—CRYPTO ’94 Lecture Notes in Computer Science, vol. 839, pp. 129–139. Springer, Berlin (1994)

  31. Devetak I., Winter A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hayashi M.: Tight exponential analysis of universally composable privacy amplification and its applications. IEEE Trans. Inf. Theory 59(11), 7728–7746 (2013)

    Article  Google Scholar 

  33. Frank R.L., Lieb E.H.: Monotonicity of a relative Renyi entropy. J. Math. Phys. 54(12), 122201 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Muller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. arXiv:1309.3228

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M. Precise Evaluation of Leaked Information with Secure Randomness Extraction in the Presence of Quantum Attacker. Commun. Math. Phys. 333, 335–350 (2015). https://doi.org/10.1007/s00220-014-2174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2174-y

Keywords

Navigation