Skip to main content
Log in

Perturbative Corrections to Kähler Moduli Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a general formula for perturbative-in-α′ corrections to the Kähler potential on the quantum Kähler moduli space of Calabi–Yau n-folds, for any n, in their asymptotic large volume regime. The knowledge of such perturbative corrections provides an important ingredient needed to analyze the full structure of this Kähler potential, including nonperturbative corrections such as the Gromov–Witten invariants of the Calabi–Yau n-folds. We argue that the perturbative corrections take a universal form, and we find that this form is encapsulated in a specific additive characteristic class of the Calabi–Yau n-fold which we call the log Gamma class, and which arises naturally in a generalization of Mukai’s modified Chern character map. Our proposal is inspired heavily by the recent observation of an equality between the partition function of certain supersymmetric, two-dimensional gauge theories on a two-sphere, and the aforementioned Kähler potential. We further strengthen our proposal by comparing our findings on the quantum Kähler moduli space to the complex structure moduli space of the corresponding mirror Calabi–Yau geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candelas P., de la Ossa X.C., Green P.S., Parkes L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B 359, 21–74 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Grisaru M.T., van de Ven A.E.M., Zanon D.: Two-dimensional supersymmetric sigma-models on Ricci-flat Kähler manifolds are not finite. Nuclear Phys. B 277, 388–408 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grisaru M.T., Kazakov D.I., Zanon D.: Five-loop divergences for the N = 2 supersymmetric nonlinear sigma-model. Nuclear Phys. B 287, 189–204 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Freeman M.D., Pope C.N., Sohnius M.F., Stelle K.S.: Higher-order σ-model counterterms and the effective action for superstrings. Phys. Lett. B 178, 199–204 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. Nemeschansky D., Sen A.: Conformal invariance of supersymmetric σ-models on Calabi–Yau manifolds. Phys. Lett. B 178, 365–369 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jockers H., Kumar V., Lapan J.M., Morrison D.R., Romo M.: Two-sphere partition functions and Gromov–Witten invariants. Commun. Math. Phys. 325(3), 1137–170 (2014)

  7. Benini, F., Cremonesi, S.: Partition functions of N =  (2, 2) gauge theories on S 2 and vortices. arXiv:1206.2356 [hep-th]

  8. Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D =  2 supersymmetric gauge theories. JHEP 1305, 093 (2013). arXiv:1206.2606 [hep-th]

  9. Gomis, J., Lee, S.: Exact Kähler potential from gauge theory and mirror symmetry. JHEP 1304, 019 (2013). arXiv:1210.6022 [hep-th]

  10. Park, D.S., Song, J.: The Seiberg–Witten Kähler potential as a two-sphere partition function. JHEP 1301, 142 (2013). arXiv:1211.0019 [hep-th]

  11. Sharpe, E.: Predictions for Gromov–Witten invariants of noncommutative resolutions. J. Geom. Phys. 74, 256–265 (2013). arXiv:1212.5322 [hep-th]

  12. Halverson, J., Kumar, V., Morrison, D.R.: New methods for characterizing phases of 2D supersymmetric gauge theories. JHEP 1309, 143 (2013). arXiv:1305.3278 [hep-th]

  13. Bonelli, G., Sciarappa, A., Tanzini, A., Vasko, P.: The stringy instanton partition function. JHEP 1401, 38 (2014). arXiv:1306.0432 [hep-th]

  14. Sharpe, E.: A few Ricci-flat stacks as phases of exotic GLSM’s. Phys. Lett. B 726, 390–395 (2013). arXiv:1306.5440 [hep-th]

  15. Honma, Y., Manabe, M.: Exact Kähler potential for Calabi–Yau fourfolds. JHEP 1305, 102 (2013). arXiv:1302.3760 [hep-th]

  16. Libgober, A.: Chern classes and the periods of mirrors. Math. Res. Lett. 6, 141–149 (1999). arXiv:math.AG/9803119

  17. Iritani, H.: Real and integral structures in quantum cohomology I: Toric orbifolds. arXiv:0712.2204 [math.AG]

  18. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222, 1016–1079 (2009). arXiv:0903.1463 [math.AG]

  19. Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry, from Hodge theory to integrability and TQFT tt*-geometry. In: Proceedings of the Sympososium on Pure Mathematics, vol. 78, pp. 87–174. American Mathematical Society, Providence, RI (2008). arXiv:0806.0107 [math.AG]

  20. Hosono, S., Lian, B.H., Yau, S.-T.: Maximal degeneracy points of GKZ systems. J. Am. Math. Soc. 10, 427–443 (1997). arXiv:alg-geom/9603014

  21. Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces. Nucl. Phys. B 433, 501–554 (1995). arXiv:hep-th/9406055

  22. Hori, K., Romo, M.: Exact results in two-dimensional (2,2) supersymmetric gauge theories with boundary. arXiv:1308.2438 [hep-th]

  23. Honda, D., Okuda, T.: Exact results for boundaries and domain walls in 2D supersymmetric theories. arXiv:1308.2217 [hep-th]

  24. Sugishita, S., Terashima, S.: Exact results in supersymmetric field theories on manifolds with boundaries. JHEP 1311, 021 (2013). arXiv:1308.1973 [hep-th]

  25. Hori, K.: Uses of linear sigma models. In: Lecture at the University of Tokyo, Tokyo, 20 February 2013 (2013)

  26. Gel′fand, I.M., Zelevinskiĭ, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funktsional. Anal. i Prilozhen. 23, 12–26 (1989) (English translation in Funct. Anal. Appl. 23(2), 94–106, 1989)

  27. Greene, B.R., Morrison, D.R., Plesser, M.R.: Mirror manifolds in higher dimension. Commun. Math. Phys. 173, 559–598 (1995). arXiv:hep-th/9402119

  28. Hirzebruch F.: Topological Methods in Algebraic Geometry, 3rd edn. Springer-Verlag, Berlin (1978)

    MATH  Google Scholar 

  29. Green, M.B., Harvey, J.A., Moore, G.W.: I-brane inflow and anomalous couplings on D-branes. Class. Quant. Grav. 14, 47–52 (1997). arXiv:hep-th/9605033

  30. Minasian, R., Moore, G.W.: K-theory and Ramond–Ramond charge. JHEP 9711, 002 (1997). arXiv:hep-th/9710230

  31. Atiyah, M.F., Hirzebruch, F.: Vector bundles and homogeneous spaces. In: Proceedings of the Symposium on Pure Mathematics, vol. III, pp. 7–38. American Mathematical Society, Providence, RI (1961)

  32. Hosono, S.: Local mirror symmetry and type IIA monodromy of Calabi–Yau manifolds. Adv. Theor. Math. Phys. 4, 335–376 (2000). arXiv:hep-th/0007071

  33. Mukai, S.: On the moduli space of bundles on K3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984). Tata Inst. Fund. Res. Stud. Math. 11, 341–413 (1987)

  34. Grimm, T.W., Ha, T.-W., Klemm, A., Klevers, D.: Computing brane and flux superpotentials in F-theory compactifications. JHEP 1004, 015 (2010). arXiv:0909.2025 [hep-th]

  35. Căldăraru, A.: The Mukai pairing. II. The Hochschild–Kostant–Rosenberg isomorphism. Adv. Math. 194, 34–66 (2005). arXiv:math.AG/0308080

  36. Fulton W., Lang S.: Riemann–Roch algebra. Grundlehren der Mathematischen Wissenschaften, vol. 277. Springer-Verlag, New York (1985)

    Google Scholar 

  37. Howe P.S., Papadopoulos G., Stelle K.: Quantizing the N =  2 super sigma model in two-dimensions. Phys. Lett. B 174, 405 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. Galperin A., Ivanov E., Ogievetsky V., Sokatchev E.: Harmonic supergraphs. Green functions. Class. Quant. Grav. 2, 601 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Hull C.: Ultraviolet finiteness of supersymmetric nonlinear sigma models. Nucl. Phys. B 260, 182–202 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  40. Álvarez-Gaumé L., Ginsparg P.H.: Finiteness of Ricci flat supersymmetric nonlinear sigma models. Commun. Math. Phys. 102, 311 (1985)

    Article  ADS  MATH  Google Scholar 

  41. Gross D.J., Witten E.: Superstring modifications of Einstein’s equations. Nucl. Phys. B 277, 1–10 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  42. Grisaru M.T., van de Ven A.E.M., Zanon D.: Four-loop β-function for the N = 1 and N = 2 supersymmetric nonlinear sigma model in two dimensions. Phys. Lett. B 173, 423–428 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  43. Zanon, D.: Four-loop σ-model beta-functions versus α′3 corrections to superstring effective actions. In: Lee, H.C., Elias, V., Kunstatter, G., Mann, R.B., Viswanathan, K.S. (eds.) Super Field Theories (NATO ASI Series), Series B: Physics, vol. 160, pp. 275–282. Plenum Press, New York (1986)

  44. Candelas P., de la Ossa X.: Moduli space of Calabi–Yau manifolds. Nucl. Phys. B 355, 455–481 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Broadhurst, D.J., Gracey, J., Kreimer, D.: Beyond the triangle and uniqueness relations: Nonzeta counterterms at large N from positive knots. Z. Phys. C 75, 559–574 (1997). arXiv:hep-th/9607174 [hep-th]

  46. Zagier, D.: Values of zeta functions and their applications. First European Congress of Mathematics, vol. II (Paris, 1992). Progr. Math. 120, 497–512, Birkhäuser, Basel (1994)

  47. Blümlein J., Broadhurst D.J., Vermaseren J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582–625 (2010)

    Article  ADS  MATH  Google Scholar 

  48. Cox D.A., Katz S.: Mirror symmetry and algebraic geometry. In: Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence, RI (1999)

  49. Zhdanov, O.N., Tsikh, A.K.: Investigation of multiple Mellin–Barnes integrals by means of multidimensional residues. Sibirsk. Mat. Zh. 39, 281–298 (1998) (English translation in Siberian Math. J. 39(2), 245–260, 1998)

  50. Halverson, J., Jockers, H., Lapan, J.M., Morrison, D.R.: (to appear)

  51. Fulton W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

    Google Scholar 

  52. Hoffman M.E.: Periods of mirrors and multiple zeta values. Proc. Am. Math. Soc. 130, 971–974 (2002)

    Article  MATH  Google Scholar 

  53. Morrison, D.R.: Compactifications of moduli spaces inspired by mirror symmetry. Journées de Géométrie Algébrique d’Orsay (Juillet 1992), Astérisque 218, 243–271 (1993), Société Mathématique de France. arXiv:alg-geom/9304007

  54. Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Peterson–Weil metric. In: Yau, S.-T. (Ed.) Mathematical Aspects of String Theory, pp. 629–646. World Scientific, Singapore (1987)

  55. Todorov A.N.: The Weil–Petersson geometry of the moduli space of \({SU(n{\geq}3)}\) (Calabi–Yau) manifolds, I. Commun. Math. Phys. 126, 325–246 (1989)

  56. Deligne P.: Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, vol. 163. Springer-Verlag, Berlin (1970)

    Google Scholar 

  57. Schmid W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Morrison, D.R.: Mathematical aspects of mirror symmetry. In: Kollár, J. (Ed.) Complex Algebraic Geometry, IAS/Park City Mathematics Series, vol. 3, pp. 265–340 (1997). arXiv:alg-geom/9609021

  59. Deligne, P.: Local behavior of Hodge structures at infinity. In: Mirror Symmetry, II, AMS/IP Studies in Advanced Mathematics, vol. 1, pp. 683–699. American Mathematical Society, Providence, RI (1997)

  60. Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  61. Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the International Congress of Mathematicians (Berlin, 1998), vol. II, pp. 315–326 (1998). arXiv:math.AG/9807034

  62. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999). arXiv:math.QA/9904055

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jockers.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halverson, J., Jockers, H., Lapan, J.M. et al. Perturbative Corrections to Kähler Moduli Spaces. Commun. Math. Phys. 333, 1563–1584 (2015). https://doi.org/10.1007/s00220-014-2157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2157-z

Keywords

Navigation