Skip to main content
Log in

On L p-Resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We address an interesting question raised by Dos Santos Ferreira, Kenig and Salo (Forum Math, 2014) about regions \({\mathcal{R}_g \subset \mathbb{C}}\) for which there can be uniform \({L^{\frac{2n}{n+2}}\to L^{\frac{2n}{n-2}}}\) resolvent estimates for \({\Delta_g + \zeta}\) , \({\zeta \in \mathcal{R}_g}\) , where \({\Delta_g}\) is the Laplace-Beltrami operator with metric g on a given compact boundaryless Riemannian manifold of dimension \({n \geq 3}\) . This is related to earlier work of Kenig, Ruiz and the third author (Duke Math J 55:329–347, 1987) for the Euclidean Laplacian, in which case the region is the entire complex plane minus any disc centered at the origin. Presently, we show that for the round metric on the sphere, S n, the resolvent estimates in (Dos Santos Ferreira et al. in Forum Math, 2014), involving a much smaller region, are essentially optimal. We do this by establishing sharp bounds based on the distance from \({\zeta}\) to the spectrum of \({\Delta_{S^n}}\) . In the other direction, we also show that the bounds in (Dos Santos Ferreira et al. in Forum Math, 2014) can be sharpened logarithmically for manifolds with nonpositive curvature, and by powers in the case of the torus, \({\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n}\) , with the flat metric. The latter improves earlier bounds of Shen (Int Math Res Not 1:1–31, 2001). The work of (Dos Santos Ferreira et al. in Forum Math, 2014) and (Shen in Int Math Res Not 1:1–31, 2001) was based on Hadamard parametrices for \({(\Delta_g + \zeta)^{-1}}\) . Ours is based on the related Hadamard parametrices for \({\cos t \sqrt{-\Delta_g}}\) , and it follows ideas in (Sogge in Ann Math 126:439–447, 1987) of proving L p-multiplier estimates using small-time wave equation parametrices and the spectral projection estimates from (Sogge in J Funct Anal 77:123–138, 1988). This approach allows us to adapt arguments in Bérard (Math Z 155:249–276, 1977) and Hlawka (Monatsh Math 54:1–36, 1950) to obtain the aforementioned improvements over (Dos Santos Ferreira et al. in Forum Math, 2014) and (Shen in Int Math Res Not 1:1–31, 2001). Further improvements for the torus are obtained using recent techniques of the first author (Bourgain in Israel J Math 193(1):441–458, 2013) and his work with Guth (Bourgain and Guth in Geom Funct Anal 21:1239–1295, 2011) based on the multilinear estimates of Bennett, Carbery and Tao (Math Z 2:261–302, 2006). Our approach also allows us to give a natural necessary condition for favorable resolvent estimates that is based on a measurement of the density of the spectrum of \({\sqrt{-\Delta_g}}\) , and, moreover, a necessary and sufficient condition based on natural improved spectral projection estimates for shrinking intervals, as opposed to those in (Sogge in J Funct Anal 77:123–138, 1988) for unit-length intervals. We show that the resolvent estimates are sensitive to clustering within the spectrum, which is not surprising given Sommerfeld’s original conjecture (Sommerfeld in Physikal Zeitschr 11:1057–1066, 1910) about these operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt W., Nittka R., Peter W., Steiner F.: Weyl’s law: spectral properties of the Laplacian in mathematics and physics. In: Arendt, W., Schleich, W.P. (eds.) Mathematical Analysis of Evolution, Information, and Complexity, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Chapter  Google Scholar 

  2. Bennett J., Carbery A., Tao T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bérard P.H.: On the wave equation on a compact manifold without conjugate points. Math. Z. 155, 249–276 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Besse A.L.: Manifolds All of Whose Geodesics are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93. Springer, Berlin (1978)

    Book  Google Scholar 

  5. Bourgain J.: Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J. Math. 193(1), 441–458 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain J.: On the Schrödinger maximal function in higher dimension. Proc. Steklov Inst. Math. 280(1), 46–60 (2013)

    Article  MATH  Google Scholar 

  7. Bourgain J., Guth L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21, 1239–1295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain J., Rudnick Z.: Restriction of toral eigenfunctions to hypersurfaces and nodal sets. Geom. Funct. Anal. 22(4), 878–937 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain, J., Rudnick, Z., Sarnak, P.: Local statistics of lattice points on the sphere, in preparation, arXiv:1204.0134

  10. Chen, X.: An improvement on eigenfunction restriction estimates for compact surfaces with nonpositive curvature, in preparation, arXiv:1205.1402

  11. Dos Santos Ferreira, D., Kenig, C., Salo, M.: On L p resolvent estimates for Laplace-Beltrami operators on compact manifolds. Forum Math. 26, 815–849 (2014). doi:10.1515/forum-2011-0157

  12. Kratzel E., Novak W.: Lattice points in large convex bodies. II. Acta Arith 62(3), 285–295 (1992)

    MathSciNet  Google Scholar 

  13. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Photo-offset reprint of a book originally published in 1923 by the Yale University Press, New Haven), Dover Publications, New York, (1953)

  14. Hassell, A., Tacy, M.: Personal communication (2010)

  15. Hlawka E.: Über Integrale auf konvexen Körpern I. Monatsh. Math. 54, 1–36 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hörmander L.: The analysis of linear partial differential operators. III. Pseudodifferential operators. Springer, Berlin (1985)

    Google Scholar 

  17. Jakobson D., Polterovich I.: Lower bounds for the spectral function and for the remainder in local Weyl’s law on manifolds. Electron. Res. Announc. Am. Math. Soc. 11, 71–77 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kenig C.E., Ruiz A., Sogge C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55, 329–347 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Riesz M.: L’intégral de Riemann-Liouville et le problèm de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seeger A., Sogge C.D.: On the boundedness of functions of (pseudo-) differential operators on compact manifolds. Duke Math. J. 59, 709–736 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shen Z.: On absolute continuity of the periodic Schrödinger operators. Int. Math. Res. Not. 1, 1–31 (2001)

    Article  Google Scholar 

  22. Shen Z., Zhao P.: Uniform Sobolev inequalities and absolute continuity of periodic operators. Trans. Am. Math. Soc. 360, 1741–1758 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sogge C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sogge C.D.: Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 77, 123–138 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sogge C.D.: On the convergence of Riesz means on compact manifolds. Ann. Math. 126, 439–447 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sogge C.D.: Fourier integrals in classical analysis. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  27. Sogge C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Princeton University Press, Princeton (2014)

    Book  MATH  Google Scholar 

  28. Sogge C.D., Toth J., Zeldtch S.: About the blowup of quasimodes on Riemannian manifolds. J. Geom. Anal. 21, 150–173 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sogge C.D., Zelditch S.: Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. 114, 387–437 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sogge, C.D., Zelditch, S.: On eigenfunction restriction estimates and L 4-bounds for compact surfaces with nonpositive curvature, arXiv:1108.2726

  31. Sommerfeld A.: Die Greensche Funktion der Schwingungsgleichung für ein beliebiges Gebiet. Physikal. Zeitschr. 11, 1057–1066 (1910)

    MATH  Google Scholar 

  32. Stein, E.M.: Oscillatory Integrals in Fourier Analysis, Beijing Lectures in Harmonic Analysis, vol. 112, pp. 307–355. Princeton University Press, Princeton (1986)

  33. Szegö G.: Beiträge zur Theorie der Laguerreschen Polynome II: Zahlentheoretische Anwendungen. Math. Z. 25, 388–404 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tomas, P.A.: Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, pp. 111–114. Proceedings of Symposium in Pure Mathematics, XXXV, Part, Am. Math. Soc., Providence, RI (1979)

  35. Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wolff, T.H.: Lectures on harmonic analysis, With a foreword by Charles Fefferman and preface by Izabella Łaba, Edited by Łaba and Carol Shubin, University Lecture Series, 29. American Mathematical Society, Providence, RI (2003)

  37. Zygmund A.: On Fourier coefficients and transforms of two variables. Studia Math. 50, 189–201 (1974)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shao.

Additional information

Communicated by W. Schlag

The second and third authors were supported in part by the NSF grant DMS-1069175. The research was carried out while the fourth author was visiting Johns Hopkins University, supported by the Program for New Century Excellent Talents in University (NCET-10-0431) and NSFC (Grant No. 11371158).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgain, J., Shao, P., Sogge, C.D. et al. On L p-Resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds. Commun. Math. Phys. 333, 1483–1527 (2015). https://doi.org/10.1007/s00220-014-2077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2077-y

Keywords

Navigation