Skip to main content
Log in

Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m > 0

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper investigates infinite-time spreading and finite-time blow-up for the Keller-Segel system. For 0 < m ≤  2 − 2 / d, the L p space for both dynamic and steady solutions are detected with \({p:=\frac{d(2-m)}{2} }\) . Firstly, the global existence of the weak solution is proved for small initial data in L p. Moreover, when m > 1 − 2 / d, the weak solution preserves mass and satisfies the hyper-contractive estimates in L q for any p < q < ∞. Furthermore, for slow diffusion 1 < m ≤  2 − 2/d, this weak solution is also a weak entropy solution which blows up at finite time provided by the initial negative free energy. For m > 2 − 2/d, the hyper-contractive estimates are also obtained. Finally, we focus on the L p norm of the steady solutions, it is shown that the energy critical exponent m = 2d/(d + 2) is the critical exponent separating finite L p norm and infinite L p norm for the steady state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N.D.: L p bounds of solutions of reaction-diffusion equations. Comm. Part. Diff. Eqs. 4, 827–868 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedrossian J.: Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion. Appl. Math. Lett. 24, 1927–1932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedrossian J.: Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models. Comm. Math. Sci. 9, 1143–1161 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bedrossian J., Rodríguez N., Bertozzi A.L.: Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion. Nonlinearity. 24, 1683–1714 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Berestycki H.: Le nombre de solutions de certains problemes semi-lineaires elliptique. J. Funct. Anal. 40, 1–29 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.L.: Asymptotics of the Fast Diffusion Equation via Entropy Estimates. Arch. Rati. Mech. Anal. 91, 347–385 (2009)

    Article  Google Scholar 

  7. Blanchet A., Carrillo J.A., Laurencot P.: Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. 35, 133–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical Patlak-Keller- Segel model in \({\mathbb{R}^2}\) . Comm. Pure Appl. Math. 61, 1449–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanchet A., Dolbeault J., Perthame B.: Two- dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Eletron. J. Diff. Eq. 44, 1–33 (2006)

    Google Scholar 

  10. Brenner M.P., Constantin P., Kadanoff L.P., Schenkel A., Venkataramani S.C.: Diffusion, attraction and collapse. Nonlinearity 12, 1071–1098 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Brenner M.P., Witelski T.P.: On spherically symmetric gravitational collapse. J. Stat. Phys. 93, 863–900 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Caffarelli L.A., Gidas B., Spruck J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calvez V., Corrias L., Ebde M.A.: Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension. Comm. Part. Diff. Eq. 37(4), 561–584 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlen E.A., Carrillo J.A., Loss M.: Hardy-Littlewood-Sobolev inequalities via fast diffusion flows. Proc. Nat. Acad. USA 107, 19696–19701 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. New York: Dover, 1967

  16. Chen W.X., Li C.M.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 333–364 (1991)

    Article  MathSciNet  Google Scholar 

  17. Chen L., Liu J.-G., Wang J.: Multi-dimensional degenerate Keller-Segel system with critical diffusion exponent 2n/(n + 2). SIAM J. Math. Anal. 44, 1077–1102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dancer, E.N., Guo, Z., Wei, J.C.: Non-radial solutions of Lane-Emden equation in \({\mathbb{R}^n}\) . Indiana Univ Math J. to appear

  19. Degond, P., Liu, J.-G., Ringhofer, C.: Large-scale dynamics of Mean-Field Games driven by local Nash equilibria. J. Nonlinear Sci. to appear

  20. Gidas B., Ni W.M., Nirenberg L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gidas, B., Ni, W.M., Nirenberg, L.: ”Symmetry of positive solutions of nonlinear elliptic equations in R n”. In: Mathematical Analysis and Applications, Part A, ed. L. Nachbin, Adv. Math. Suppl. Stud. 7, New York: Academic Press, 1981, pp. 369–402

  22. Gidas B., Spruck J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gui C., Ni W.M., Wang X.F.: On the stability and instability of positive steady states of a semilinear heat equation in R n. Comm. Pure Appl. Math. 45, 1153–1181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo Z.M.: On the symmetry of positive solutions of the Lane-Emden equation with super-critical exponent. Adv. Diff. Eqs. 7, 641–666 (2002)

    MATH  Google Scholar 

  25. Herrero M., Medina E., Velázquez J.L.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10, 1739–1754 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Herrero M., Medina E., Velázquez J.L.: Self-similar blow-up for a reaction-diffusion system. J. Comp. Appl. Math. 97, 99–119 (1998)

    Article  MATH  Google Scholar 

  27. Herrero M.A., Pierre M.: The Cauchy problem for u t =  Δu m when 0 <  m <  1. Trans. AMS. 291, 145–158 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modeling chemotaxis. Trans. Amer. Math. Soc. 239(2), 819–821 (1992)

    Google Scholar 

  29. Joseph D.D., Lundgren T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49, 241–269 (1973)

    MathSciNet  MATH  Google Scholar 

  30. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  31. Kim I., Yao Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44, 568–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laugesen R.S., Pugh M.C.: Properties of steady states for thin film equations. Eur. J. Appl. Math. 11, 293–351 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lieb E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics. V. 14, Providence, RI: Amer. Math. Soc., 2nd edition, 2001

  35. Lions P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4), 441–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions P.L.: The concentration-compactness principle in calculus of variations. The locally compact case, part 1. Ann. Inst. Henri. Poincare. 1, 109–145 (1984)

    MATH  Google Scholar 

  37. Perthame, B: Transport Equations in Biology. Basel-Boston-Berlin: Birkhaeuser Verlag, 2007

  38. Pohozaev S.I.: Eigenfunctions of the equation Δu + λ f(u) = 0. Sov. Math. 5, 1408–1411 (1965)

    Google Scholar 

  39. Ströhmer G.: Stationary states and moving planes. Banach Center Publ. 81, 501–513 (2008)

    Article  Google Scholar 

  40. Sugiyama Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems. Diff. Int. Eqs. 19, 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Sugiyama Y., Kunii H.: Global existence and decay properties for a degenerate keller-segel model with a power factor in drift term. J. Diff. Eqs. 227, 333–364 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Sugiyama Y., Yahagi Y.: Extinction, decay and blow-up for Keller-Segel system of fast diffusion type. J. Diff. Eqs. 250, 3047–3087 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Ser. Math. Appl., Vol. 33, Oxford: Oxford Univ. Press, 2006

  44. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford: Oxford University Press, 2007

  45. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  ADS  MATH  Google Scholar 

  46. Witelski, T.P.: Computing finite-time singularities in interfacial flows. In: Modern methods in scientific computing and applications, NATO Sci. Ser. II Math. Phys. Chem. 75, Dordrecht: Kluwer Acad. Publ., 2002, pp. 451–487

  47. Witelski T.P., Bernoff A.J., Bertozzi A.L.: Blowup and dissipation in critical-case unstable thin film equaion. Eur. J. Appl. Math. 15, 223–256 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yao, Y., Bertozzi, A.L.: Blow-up dynamics for the aggregation equation with degenerate diffusion. Physica D (2013), doi: 10.1016/j.physd.2013.01.009

  49. Zou H.H.: Symmetry of positive solutions of Δuu p =  0 in R n. J. Diff. Eqns. 120, 46–88 (1995)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, S., Liu, JG. Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m > 0. Commun. Math. Phys. 323, 1017–1070 (2013). https://doi.org/10.1007/s00220-013-1777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1777-z

Keywords

Navigation