Skip to main content
Log in

Vortex Density Models for Superconductivity and Superfluidity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in the companion paper (Baldo et al. in Arch Rat Mech Anal 205(3):699–752, 2012). In our main results, we use these functionals to obtain leading order descriptions of the first critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion A., Alama S., Bronsard L.: Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Rat. Mech. Anal. 178(2), 247–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aftalion A., Jerrard R.L.: On the shape of vortices for a rotating bose-einstein condensate. Phys. Rev. A 66, 023611 (2002)

    Article  ADS  Google Scholar 

  3. Aftalion A., Riviére T.: Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64(4), 043611 (2001)

    Article  ADS  Google Scholar 

  4. Alama S., Bronsard L.: Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys. 46(9), 095102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Alama S., Bronsard L.: Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains. Comm. Pure Appl. Math. 59(1), 36–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alama S., Bronsard L., Montero J.A.: On the Ginzburg-Landau model of a superconducting ball in a uniform field. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(2), 237–267 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Baldo S., Jerrard R.L., Orlandi G., Soner H.M.: Convergence of Ginzburg-Landau functionals in 3-d superconductivity. Arch. Rat. Mech. Anal. 205(3), 699–752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain J., Brezis H., Mironescu P.: H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. 99, 1–115 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis H., Serfaty S.: A variational formulation for the two-sided obstacle problem with measure data. Commun. Contemp. Math. 4(2), 357–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caselles, V., Chambolle, A., Novaga, M.: Total variation in imaging. In: Handbook of Mathematical Methods in Imaging. Berlin-Heidelberg-New York: Springer, 2011, pp. 1016–1057

  11. Chapman, S.J.: A hierarchy of models for type-II superconductors. SIAM Rev. 42(4), 555–598 (electronic), (2000)

    Google Scholar 

  12. Contreras A.: On the first critical field in Ginzburg-Landau theory for thin shells and manifolds. Arch. Ration. Mech. Anal. 200(2), 563–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Contreras A., Sternberg P.: Gamma-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds. Calc. Var. Par. Diff. Eq. 38(1–2), 243–274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Correggi M., Rougerie N., Yngvason J.: The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate. Commun. Math. Phys. 303(2), 451–508 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Correggi M., Yngvason J.: Energy and vorticity in fast rotating Bose-Einstein condensates. J. Phys. A 41(44), 445002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ekeland, I., Témam, R.: Convex analysis and variational problems. Volume 28 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), English edition, 1999, translated from the French

  17. Fournais, S., Helffer, B.: Spectral methods in surface superconductivity. Progress in Nonlinear Differential Equations and their Applications, 77. Boston, MA: Birkhäuser Boston Inc., 2010

  18. Ignat R., Millot V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal. 233(1), 260–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ignat R., Millot V.: Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate. Rev. Math. Phys. 18(2), 119–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec T., Scott C., Stroffolini B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. (4) 177, 37–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerrard, R.L.: Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM Control Optim. Calc. Var. 13(1), 35–71 (electronic), (2007)

  22. Jerrard R.L., Montero A., Sternberg P.: Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Commun. Math. Phys. 249(3), 549–577 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Jerrard R.L., Soner H.M.: Limiting behavior of the Ginzburg-Landau functional. J. Funct. Anal. 192(2), 524–561 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kachmar A.: The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase. J. Funct. Anal. 261(11), 3328–3344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lassoued L., Mironescu P.: Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77, 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. London F.: Superfluids. Wiley, New York (1950)

    MATH  Google Scholar 

  27. Montero J.A.: Hodge decomposition with degenerate weights and the Gross-Pitaevskii energy. J. Funct. Anal. 254(7), 1926–1973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rougerie N.: The giant vortex state for a Bose-Einstein condensate in a rotating anharmonic trap: extreme rotation regimes. J. Math. Pures Appl. (9) 95(3), 296–347 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Rudin L., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  ADS  MATH  Google Scholar 

  30. Sandier E., Serfaty S.: Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 119–145 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Sandier E., Serfaty S.: A rigorous derivation of a free-boundary problem arising in superconductivity. Ann. Sci. École Norm. Sup. (4) 33(4), 561–592 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, 70. Boston, MA: Birkhäuser Boston Inc., 2007

  33. Serfaty S.: Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1(2), 213–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smirnov S.K.: Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. Algebra i Analiz 5(4), 206–238 (1993)

    MATH  Google Scholar 

  35. Van Schaftingen J.: A simple proof of an inequality of Bourgain, Brezis and Mironescu. C. R. Math. Acad. Sci. Paris 338(1), 23–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Jerrard.

Additional information

Communicated by I. M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldo, S., Jerrard, R.L., Orlandi, G. et al. Vortex Density Models for Superconductivity and Superfluidity. Commun. Math. Phys. 318, 131–171 (2013). https://doi.org/10.1007/s00220-012-1629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1629-2

Keywords

Navigation