Skip to main content
Log in

Continuum Statistics of the Airy2 Process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that \({\sup(\mathcal{A}_{2}(x)-x^2)}\) is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson’s (Commun. Math. Phys. 242(1–2):277–329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices., Vol. 118. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 2010

  3. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55. Washington, DC: National Bureau of Standards Applied Mathematics Series, 1964

  4. Bornemann F ., Ferrari P., Prähofer M.: The Airy_1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion. J. Stat. Phys. 133, 405–415 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Borodin A., Ferrari P.L., Sasamoto T.: Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP. Commun. Math. Phys. 283(2), 417–449 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Baik, J., Rains, E.M.: Symmetrized random permutations. In: Random matrix models and their applications. Vol. 40. Math. Sci. Res. Inst. Publ., Cambridge: Cambridge Univ. Press, 2001, pp. 1–19

  7. Borodin, A.N., Salminen, P.: Handbook of Brownian motion—facts and formulae. Second Edition. Probability and its Applications. Basel: Birkhäuser Verlag, 2002

  8. Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. http://arxiv.org/abs/1108.2291v1 [math.PR], 2011

  9. Dyson F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Erdélyi, A.: Asymptotic expansions. New York: Dover Publications Inc., 1956

  11. Feierl, T.: The Height and Range of Watermelons without Wall. In: Combinatorial Algorithms. Vol. 5874. Lecture Notes in Computer Science. Berlin-Heidelberg: Springer, 2009, pp. 242–253

  12. Fisher M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  ADS  MATH  Google Scholar 

  13. Forrester P.J., Majumdar S.N., Schehr G.: Non-intersecting Brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B. 844(3), 500–526 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Forrester P.J., Nagao T., Honner G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B. 553(3), 601–643 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ferrari P.L., Spohn H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A. 38, L557–L561 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Johansson K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1-2), 277–329 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  17. Macêdo A.M.S.: Universal Parametric Correlations at the Soft Edge of the Spectrum of Random Matrix Ensembles. Europhys. Lett. 26(9), 641 (1994)

    Article  ADS  Google Scholar 

  18. Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1+1 dimensions. Commun. Math. Phys. (2012). doi:10.1007/s00220-012-1583-z

  19. Prähofer M., Spohn H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5-6), 1071–1106 (2002)

    Article  MATH  Google Scholar 

  20. Prolhac S., Spohn H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. Theor. Exp. 2011(03), P03020 (2011)

    Article  MathSciNet  Google Scholar 

  21. Quastel, J., Remenik, D.: Local behavior and hitting probabilities of the Airy1 process. http://arxiv.org/abs/1201.4709v3 [math.PR], 2012

  22. Rambeau J., Schehr G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. EPL (Europhysics Letters) 91(6), 60006 (2010)

    Article  ADS  Google Scholar 

  23. Rambeau J., Schehr G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146 (2011)

    Article  ADS  Google Scholar 

  24. Sasamoto T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A: Math. and Gen. 38, L549 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Simon, B.: Trace ideals and their applications. Second ed., Vol. 120. Mathematical Surveys and Monographs. Providence, RI: Amer. Math. Soc., 2005

  26. Tracy C.A., Widom H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Vallée, O., Soares, M.: Airy functions and applications to physics. Second ed., London: Imperial College Press, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Quastel.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corwin, I., Quastel, J. & Remenik, D. Continuum Statistics of the Airy2 Process. Commun. Math. Phys. 317, 347–362 (2013). https://doi.org/10.1007/s00220-012-1582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1582-0

Keywords

Navigation