Skip to main content

Advertisement

Log in

The Scaling Limit of the Critical One-Dimensional Random Schrödinger Operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider two models of one-dimensional discrete random Schrödinger operators

$$(H_n\psi)_\ell =\psi_{\ell -1}+\psi_{\ell +1}+v_\ell \psi_\ell$$

, \({\psi_0=\psi_{n+1}=0}\) in the cases \({ v_k=\sigma \omega_k/\sqrt{n}}\) and \({ v_k=\sigma \omega_k/ \sqrt{k}}\) . Here ω k are independent random variables with mean 0 and variance 1.

We show that the eigenvectors are delocalized and the transfer matrix evolution has a scaling limit given by a stochastic differential equation. In both cases, eigenvalues near a fixed bulk energy E have a point process limit. We give bounds on the eigenvalue repulsion, large gap probability, identify the limiting intensity and provide a central limit theorem.

In the second model, the limiting processes are the same as the point processes obtained as the bulk scaling limits of the β-ensembles of random matrix theory. In the first model, the eigenvalue repulsion is much stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  3. Bachmann S., De Roeck W.: From the Anderson model on a strip to the DMPK equation and random matrix theory. J. Stat. Phys. 139(4), 541–564 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bellissard J.V., Hislop P.D., Stolz G.: Correlations estimates in the lattice Anderson model. J. Stat. Phys. 129(4), 649–662 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Carmona R., Klein A., Martinelli F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108(1), 41–66 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Combes J.-M., Germinet F., Klein A.: Generalized eigenvalue-counting estimates for the Anderson model. J. Stat. Phys. 135, 201–216 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Delyon F., Simon B., Souillard B.: From power pure point to continuous spectrum in disordred systems. Ann. de l’I.H.P Sec. A 42(3), 283–309 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Ethier, S.N., Kurtz, T.G.: Markov processes. New York: John Wiley & Sons Inc., 1986

  9. Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  ADS  MATH  Google Scholar 

  10. Gertsenshtein M.E., Vasilev V.B.: Waveguide with random non-homogeneities and Brownian motion on the Lobachevskii plane. Theor. Prob. Appl. 4, 391–398 (1959)

    Article  Google Scholar 

  11. Graf G.M., Vaghi A.: A Remark on the estimate of a determinant by Minami. Lett. Math. Phys. 79(1), 17–22 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Gold’sheid I., Molchanov S., Pastur L.: A random homogeneous Schrödinger operator has a pure point spectrum. Funct. Anal. Appl. 11, 1–10 (1977)

    Article  Google Scholar 

  13. Karatzas I., Shreve S.E.: Brownian motion and stochastic calculus. Springer-Verlag, New York (1977)

    Google Scholar 

  14. Kallenberg O.: Foundations of modern probability. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  15. Killip, R.: Gaussian fluctuations for β ensembles. Int. Math. Res. Not. Art. ID mn007, 19 pp (2008)

  16. Killip R., Stoiciu M.: Eigenvalue Statistics for CMV Matrices: From Poisson to Clock via Random Matrix Ensembles. Duke Math. J. 146(3), 361–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiselev A., Last Y., Simon B.: Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Commun. Math. Phys. 194, 1–45 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kunz H., Souillard B.: Sur le spectre des operateurs aux différences finies aléatoires. Commun. Math. Phys. 78(2), 201–246 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Minami N.: Local fluctuation of the spectrum of a multidimensional Anderson tight-binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Molchanov S.: The local structure of the spectrum of the one-dimensional Schrödinger operator. Commun. Math. Phys. 78, 429–446 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Protter, P.E.: Stochastic integration and differential equations, Berlin-Heidelberg-New York: Springer-Verlag, 2005

  22. Schulz-Baldes H.: Perturbation theory for Lyapunov exponents of an Anderson model on a strip. GAFA. 14, 1089–1117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stroock D.W., Stroock D.W., Stroock D.W.: Multidimensional diffusion processes. Springer-Verlag, Berlin (1979)

    MATH  Google Scholar 

  24. Valkó B., Virág B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177, 463–508 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Virág B., Valkó B.: Large gaps between random eigenvalues. Ann. Probab. 38(3), 1263–1279 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Virág, B., Valkó, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. http://arxiv.org/abs0912.0097v3 [math. PR], 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedek Valkó.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kritchevski, E., Valkó, B. & Virág, B. The Scaling Limit of the Critical One-Dimensional Random Schrödinger Operator. Commun. Math. Phys. 314, 775–806 (2012). https://doi.org/10.1007/s00220-012-1537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1537-5

Keywords

Navigation